Four-Area Load Frequency Control of an Interconnected Power System Using Neuro-Fuzzy Hybrid Intelligent Proportional and Integral Control Approach

2013 ◽  
Vol 22 (2) ◽  
pp. 131-153 ◽  
Author(s):  
Surya Prakash Giri ◽  
Sunil Kumar Sinha

AbstractThis article presents a novel control approach, hybrid neuro-fuzzy (HNF), for the load frequency control (LFC) of a four-area interconnected power system. The advantage of this controller is that it can handle nonlinearities, and at the same time, it is faster than other existing controllers. The effectiveness of the proposed controller in increasing the damping of local and inter-area modes of oscillation is demonstrated in a four-area interconnected power system. Areas 1 and 2 consist of a thermal reheat power plant, whereas Areas 3 and 4 consist of a hydropower plant. Performance evaluation is carried out by using fuzzy, artificial neural network (ANN), adaptive neuro-fuzzy inference system, and conventional proportional and integral (PI) control approaches. Four different models with different controllers are developed and simulated, and performance evaluations are carried out with said controllers. The result shows that the intelligent HNF controller has improved dynamic response and is at the same time faster than ANN, fuzzy, and conventional PI controllers.

2021 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Anh-Tuan Tran ◽  
Phong Thanh Tran ◽  
Van Van Huynh

This study investigates load frequency control based generalized extended state observer (GESO) for interconnected power systems subject to multi-kind of the power plant. First, the mathematical model of the interconnected power system is proposed based on the dynamic model of thermal power plant with reheat turbine and hydropower plant. Second, the GESO is designed to estimate the system states and disturbances. In addition, the problem of unmeasurable system states in the interconnected power network due to lack of sensor has been solved by using the proposed load frequency control based GESO. The numerical experiments are carried out by using MATLAB/ SIMULINK simulation. The simulation results point out that the proposed control approach has the capacity to handle the uncertainties and disturbances in the interconnected power system with better transient performances in comparison with the existing control approach. The relevant dynamic models have already been used for the simulation of the physical constraints of the governor dead band (GDB) and generation rate constraint (GRC) effect in the power plants. It is evident that the robustness of the suggested controller in terms of stability and effectiveness of the system. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.


Load frequency control (LFC) in interconnected power system of small distribution generation (DG) for reliability in distribution system. The main objective is to performance evaluation load frequency control of hybrid for interconnected two-area power systems. The simulation consist of solar farm 10 MW and gasifier plant 300 kW two-area in tie line. This impact LFC can be address as a problem on how to effectively utilize the total tie-line power flow at small DG. To performance evaluation and improve that defect of LFC, the power flow of two-areas LFC system have been carefully studied, such that, the power flow and power stability is partially LFC of small DG of hybrid for interconnected two-areas power systems. Namely, the controller and structural properties of the multi-areas LFC system are similar to the properties of hybrid for interconnected two-area LFC system. Inspired by the above properties, the controller that is propose to design some proportional-integral-derivative (PID) control laws for the two-areas LFC system successfully works out the aforementioned problem. The power system of renewable of solar farm and gasifier plant in interconnected distribution power system of area in tie – line have simulation parameter by PID controller. Simulation results showed that 3 types of the controller have deviation frequency about 0.025 Hz when tie-line load changed 1 MW and large disturbance respectively. From interconnected power system the steady state time respond is 5.2 seconds for non-controller system, 4.3 seconds for automatic voltage regulator (AVR) and 1.4 seconds for under controlled system at 0.01 per unit (p.u.) with PID controller. Therefore, the PID control has the better efficiency non-controller 28 % and AVR 15 %. The result of simulation in research to be interconnected distribution power system substation of area in tie - line control for little generate storage for grid connected at better efficiency and optimization of renewable for hybrid. It can be conclude that this study can use for applying to the distribution power system to increase efficiency and power system stability of area in tie – line.


Sign in / Sign up

Export Citation Format

Share Document