spot joining
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 21)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Arindom Baruah ◽  
Jayaprakash Murugesan ◽  
Hemant Borkar

Abstract Friction stir spot welding is a solid-state joining process that has attracted significant attention particularly in the field of joining of lightweight, low melting alloys. These materials include alloys of Aluminium and Magnesium amongst many others which are of great importance to the aerospace and the automobile industries. The friction stir spot welding is a complex thermo-mechanical multiphysics phenomenon and is currently a field of intense research. The motivation of the current study is to understand this complex behaviour of the joining process by simulating it in the ABAQUS CAE environment. In the friction stir spot joining technique, the plunge stage is identified as the critical stage of operation as it involves a highly transient and dynamic zone for material and temperature flows. The plunge stage was studied in detail using the finite element based model. The plasticity of the material was simulated by the Johnson-Cook material model while the frictional heat generation was captured by applying a penalty-based frictional contact between the rotating tool and the workpiece contact surfaces. Considering the reasonable assumptions made, the results obtained by the numerical simulation model were found to agree with the past experimental and numerically modelled studies.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4516
Author(s):  
Seyed Mohammad Goushegir ◽  
Jorge F. dos Santos ◽  
Sergio T. Amancio-Filho

Friction spot joining is an alternative technique for joining metals with polymers and composites. This study investigated the fatigue performance of aluminum alloy 2024/carbon-fiber-reinforced poly(phenylene sulfide) joints that were produced with friction spot joining. The surface of the aluminum was pre-treated using various surface treatment methods. The joined specimens were tested under dynamic loading using a load ratio of R = 0.1 and a frequency of 5 Hz. The tests were performed at different percentages of the lap shear strength of the joint. Three models—exponential, power law, and wear-out—were used to statistically analyze the fatigue life of the joints and to draw the stress–life (S–N) curves. The joints showed an infinite life of 25–35% of their quasi-static strength at 106 cycles. The joints surpassing 106 cycles were subsequently tested under quasi-static loading, showing no considerable reduction compared to their initial lap shear strength.


2021 ◽  
Vol 1105 (1) ◽  
pp. 012043
Author(s):  
Faeq Yaseen Sadkhan ◽  
Sabah Khammass Hussain ◽  
Abdulwahab Hassan Khuder
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document