A Theoretical Study of the Temperature Gradient Effect on the Soret Coefficient in n-Pentane/n-Decane Mixtures Using Non-Equilibrium Molecular Dynamics

2020 ◽  
Vol 45 (4) ◽  
pp. 319-332
Author(s):  
Xiaoyu Chen ◽  
Ruquan Liang ◽  
Yong Wang ◽  
Ziqi Xia ◽  
Lichun Wu ◽  
...  

AbstractThe effect of the temperature gradient on the Soret coefficient in n-pentane/n-decane (n-C5/n-C10) mixtures was investigated using non-equilibrium molecular dynamics (NEMD) with the heat exchange (eHEX) algorithm. n-Pentane/n-decane mixtures with three different compositions (0.25, 0.5, and 0.75 mole fractions, respectively) and the TraPPE-UA force field were used in computing the Soret coefficient ({S_{T}}) at 300 K and 1 atm. Added/removed heat quantities (ΔQ) of 0.002, 0.004, 0.006, 0.008, and 0.01 kcal/mol were employed in eHEX processes in order to study the effect of different thermal gradients on the Soret coefficient. Moreover, a phenomenological description was applied to discuss the mechanism of this effect. Present results show that the Soret coefficient values firstly fluctuate violently and then become increasingly stable with increasing ΔQ (especially in the mixture with a mole fraction of 0.75), which means that ΔQ has a smaller effect on the Soret coefficient when the temperature gradient is higher than a certain thermal gradient. Thus, a high temperature gradient is recommended for calculating the Soret coefficient under the conditions that a linear response and constant phase are ensured in the system. In addition, the simulated Soret coefficient obtained at the highest ΔQ within three different compositions is in great agreement with experimental data.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xiaoyu Chen ◽  
Ruquan Liang ◽  
Lichun Wu ◽  
Gan Cui

Abstract Equimolar mixtures composed of isomers were firstly used to investigate the molecular branching effect on thermal diffusion behavior, which was not disturbed by factors of molecular mass and composition in this work. Eight heptane isomers, including n-heptane, 2-methylhexane, 3-methylhexane, 2,2-dimethylpentane, 2,3-dimethylpentane, 2,4-dimethylpentane, 3,3-dimethylpentane and 3-ethylpentane, were chosen as the researched mixtures. A non-equilibrium molecular dynamics (NEMD) simulation with enhanced heat exchange (eHEX) algorithm was applied to calculate the Soret coefficient at T = 303.15 T=303.15  K and P = 1.0 atm P=1.0\hspace{0.1667em}\text{atm} . An empirical correlation based on an acentric factor was proposed and its calculation coincides with the simulated results, which showed the validity of the NEMD simulation. It is demonstrated that the isomer with higher acentric factor has a stronger thermophilic property and tends to migrate to the hot region in the heptane isomer mixture, and the extent of thermal diffusion is proportional to the difference between the acentric factors of the isomers.


2015 ◽  
Vol 32 (3) ◽  
pp. 683-698 ◽  
Author(s):  
F. A. Furtado ◽  
◽  
A. J. Silveira ◽  
C. R. A. Abreu ◽  
F. W. Tavares ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document