Evaluation of Chirped Fiber Bragg Grating with APD on Designed Optical Fiber Communication Link

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Suresh Kumar ◽  
Shiwani Rathee ◽  
Payal Arora

AbstractApplication of fiber Bragg grating (FBG) in optical communication is an evolving field. In this research paper, various types of chirped FBG’s (CFBG) have been used with avalanche photodiode (APD) on the designed optical fiber communication (OFC) link. Data rate of 20 Gbps and return-to-zero modulation format has been kept as fixed parameters. The designed link has been evaluated for varying fiber lengths (100, 200, 300, 400 and 500 km), various type of CFBG’s (linear, quadratic, square root and cubic root) with Gaussian apodization function, varying grating lengths (10, 20, 30, 40 and 50 mm) and operating temperatures (5°C, 10°C, 15°C, 20°C, 25°C, 30°C). The designed OFC link has also been evaluated for APD with and without CFBG. The performance evaluation matrix parameters selected are Q-factor, bit error rate and eye diagram. The OFC link employing CFBG with APD has been found to be superior. In compensating chromatic dispersion, optimum results have been observed for linear CFBG with Gaussian apodization function in comparison to other types of CFBG with 50 mm grating length for the maximum transmission distance.

Author(s):  
Huijuan Dong ◽  
Shaopeng Yang ◽  
Jun He ◽  
Guangyu Zhang ◽  
Siying Wang ◽  
...  

Optical fiber sensor technology is more and more widely applied in the health monitoring testing of the major projects and infrastructure, because its sensing elements possess characteristics like the small size, high durability, absolute measurement and distributed monitoring. With the development of the optical fiber communication technology, several different kinds of passive devices appear continuously. Fiber Bragg Grating (FBG for short) develops continuingly and speedily in the field of optical fiber communication and sensing technology, owing to its good properties, such as low insertion loss, wavelength absolute coding, being independence on polarization, the flexible adjustment of wavelength and bandwidth and easily connect to fiber. But Fiber Bragg Grating is sensitive about two parameters — the changing temperature and the outside strain. Therefore, cross sensitivity becomes the hot issue. This paper will introduce the temperature compensation technology of the strain monitoring system for a quasi-distributed Fiber Bragg Grating.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Suresh Kumar ◽  
Shiwani Rathee ◽  
Payal Arora ◽  
Deepak Sharma

AbstractThe optical fiber communication offers a huge bandwidth for data transmission at higher data rates but to increase the throughput for long-haul networks, metro data links, and data centers, additional fiber is required which is not economical. For effective reception of signals at the receiver, the photo detector in optical communication requires higher efficiency, lower noise, ultrafast response and optimum received signal strength. The inherent dispersion and nonlinear impairments in optical fiber communication system can be overcome by using the Fiber Bragg Grating (FBG) which is a Dispersion Compensating Module. FBG helps to improve the long-haul transmission by providing an efficient system performance. This paper presents a detailed review of FBG and photo detectors and their use in an Optical communication system. This paper will help the researchers to find useful material at a single platform.


Photonics ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 464
Author(s):  
Mohammed R. Hayal ◽  
Bedir B. Yousif ◽  
Mohamed A. Azim

In this paper, we enhance the performance efficiency of the free-space optical (FSO) communication link using the hybrid on-off keying (OOK) modulation, M-ary digital pulse position modulation (M-ary DPPM), and M-pulse amplitude and position modulation (M-PAPM). This work analyzes and enhances the bit error rate (BER) performance of the moment generating function, modified Chernoff bound, and Gaussian approximation techniques. In the existence of both an amplified spontaneous emission (ASE) noise, atmospheric turbulence (AT) channels, and interchannel crosstalk (ICC), we propose a system model of the passive optical network (PON) wavelength division multiplexing (WDM) technique for a dense WDM (DWDM) based on the hybrid fiber FSO (HFFSO) link. We use eight wavelength channels that have been transmitted at a data rate of 2.5 Gbps over a turbulent HFFSO-DWDM system and PON-FSO optical fiber start from 1550 nm channel spacing in the C-band of 100 GHz. The results demonstrate (2.5 Gbps × 8 channels) 20 Gbit/s-4000 m transmission with favorable performance. In this design, M-ary DPPM-M-PAPM modulation is used to provide extra information bits to increase performance. We also propose to incorporate adaptive optics to mitigate the AT effect and improve the modulation efficiency. We investigate the impact of the turbulence effect on the proposed system performance based on OOK-M ary- PAPM-DPPM modulation as a function of M-ary DPPM-PAPM and other atmospheric parameters. The proposed M-ary hybrid DPPM-M-PAPM solution increases the receiver sensitivity compared to OOK, improves the reliability and achieves a lower power penalty of 0.2–3.0 dB at low coding level (M) 2 in the WDM-FSO systems for the weak turbulence. The OOK/M-ary hybrid DPPM-M-PAPM provides an optical signal-to-noise ratio of about 4–8 dB of the DWDM-HFFSO link for the strong turbulence at a target BER of 10−12. The numerical results indicate that the proposed design can be enhanced with the hybrid OOK/M-DPPM and M-PAPM for DWDM-HFFSO systems. The calculation results show that PAPM-DPPM has increased about 10–11 dB at BER of 10−12 more than the OOK-NRZ approach. The simulation results show that the proposed hybrid optical modulation technique can be used in the DWDM-FSO hybrid links for optical-wireless and fiber-optic communication systems, significantly increasing their efficiency. Finally, the use of the hybrid OOK/M-ary DPPM-M-PAPM modulation schemes is a new technique to reduce the AT, ICC, ASE noise for the DWDM-FSO optical fiber communication systems.


Sign in / Sign up

Export Citation Format

Share Document