Structural dependence of transmission characteristics for photonic crystal fiber with circularly distributed air-holes

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Kajal Mondal

AbstractIn this study, design and transmission characteristics of a special type of photonic crystal fiber (PCF) geometry namely, circular-lattice photonic crystal fiber (C-PCF) structure are presented. The cladding of the structure consists by a cylindrically symmetrical distribution of air-holes in the silica background and the core is created by omitting one air-hole at the center. The structure provides high degree of flexibility in the fiber design and hence tailorable modal properties. Structural dependence of transmission characteristics of the geometry is numerically investigated by using finite difference mode convergence algorithm. The wavelength responses of fiber parameters, such as effective refractive index, chromatic dispersion, mode-effective area, and nonlinear coefficient of the structure are systematically investigated. Besides, effective V-parameter and single-mode operation of the fiber are also evaluated and discussed. The simulation results show the possibility of large negative dispersion and dispersion flattened nature of the geometry.

Photonics ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 16
Author(s):  
Abdul Mu’iz Maidi ◽  
Izaddeen Yakasai ◽  
Pg Emeroylariffion Abas ◽  
Malik Muhammad Nauman ◽  
Rosyzie Anna Apong ◽  
...  

A simple hexagonal lattice photonic crystal fiber model with liquid-infiltrated core for different liquids: water, ethanol and benzene, has been proposed. In the proposed structure, three air hole rings are present in the cladding and three equal sized air holes are present in the core. Numerical investigation of the proposed fiber has been performed using full vector finite element method with anisotropic perfectly match layers, to show that the proposed simple structure exhibits high relative sensitivity, high power fraction, relatively high birefringence, low chromatic dispersion, low confinement loss, small effective area, and high nonlinear coefficient. All these properties have been numerically investigated at a wider wavelength regime 0.6–1.8 μm within mostly the IR region. Relative sensitivities of water, ethanol and benzene are obtained at 62.60%, 65.34% and 74.50%, respectively, and the nonlinear coefficients are 69.4 W−1 km−1 for water, 73.8 W−1 km−1 for ethanol and 95.4 W−1 km−1 for benzene, at 1.3 µm operating wavelength. The simple structure can be easily fabricated for practical use, and assessment of its multiple waveguide properties has justified its usage in real liquid detection.


2020 ◽  
Vol 34 (28) ◽  
pp. 2050259
Author(s):  
Mohammad Rakibul Islam ◽  
Farhana Akter Mou ◽  
Md. Moshiur Rahman ◽  
Mohammed Imamul Hassan Bhuiyan

In this paper, a hollow core photonic crystal fiber (PCF)-based THz chemicals sensor has been presented. Hexagonal shaped hollow core and symmetrical hexagonal air lattices have been used in the cladding section to construct the PCF geometry. The developed PCF-based chemical sensor yields high performance in ethanol, methanol, water and benzene detection in targeted liquid samples in the THz regime, which is nearly 99% at 3 THz. Additionally, it reveals very negligible losses in both polarization modes. In addition, it renders significant improvement in different sensing properties like effective area, effective refractive index, numerical aperture (NA), nonlinear coefficient, spot size and beam divergences because of strategic geometrical arrangements. The performance of the proposed PCF sensor is numerically investigated and designed by COMSOL software v.5.3a. Fabrication feasibility of developed geometry is also stated here.


Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 249
Author(s):  
Abdul Mu’iz Maidi ◽  
Pg Emeroylarffion Abas ◽  
Pg Iskandar Petra ◽  
Shubi Kaijage ◽  
Nianyu Zou ◽  
...  

A novel liquid-infiltrated photonic crystal fiber model applicable in liquid sensing for different test liquids—water, ethanol and benzene—has been proposed. One core hole and three air hole rings have been designed and a full vector finite element method has been used for numerical investigation to give the best results in terms of relative sensitivity, confinement loss, power fraction, dispersion, effective area, nonlinear coefficient, numerical aperture and V-Parameter. Specially, the assessed relative sensitivities of the proposed fiber with water, ethanol and benzene are 94.26%, 95.82% and 99.58%, respectively, and low confinement losses of 1.52 × 10−11 dB/m with water, 1.21 × 10−12 dB/m with ethanol and 6.01 × 10−16 dB/m with benzene, at 1.0 μm operating wavelength. This novel PCF design is considered simple and can be easily fabricated for practical use, and the assessed waveguide properties has determined the potential applicability in real liquid sensing applications.


2019 ◽  
Vol 40 (4) ◽  
pp. 401-410 ◽  
Author(s):  
Md. Ibadul Islam ◽  
Kawsar Ahmed ◽  
Shuvo Sen ◽  
Bikash Kumar Paul ◽  
Md. Shadidul Islam ◽  
...  

Abstract A photonic crystal fiber in square lattice architecture is numerically investigated and proposed for broadband dispersion compensation in optical transmission system. Simulation results reveal that it is possible to obtain an ultra-high negative dispersion of about −571.7 to −1889.7 (ps/nm.km) in the wavelength range of 1340 nm to 1640 nm. Experimentally it is demonstrated that the design fiber covers a high birefringence of order 4.74×10‒3 at the wavelength of 1550 nm. Here, numerical investigation of guiding properties and geometrical properties of the proposed PCF are conducted using the finite element method (FEM) with perfectly match layers. Moreover, it is established more firmly that the proposed fiber successfully compensates the chromatic dispersion of standard single mode in entire band of interest. Our result is attractive due to successfully achieve ultra-high negative dispersion that is more promisor than the prior best results.


2019 ◽  
Vol 40 (4) ◽  
pp. 411-417 ◽  
Author(s):  
Shuvo Sen ◽  
Md. Shadidul Islam ◽  
Bikash Kumar Paul ◽  
Md. Ibadul Islam ◽  
Sawrab Chowdhury ◽  
...  

Abstract In this article, a low loss circular photonic crystal fiber (C-PCF) has been suggested as Terahertz (THz) waveguide. Both the core and cladding vicinity of the suggested PCF are constituted by circular-shaped air holes. The optical properties such as effective material loss, effective area, core power fraction and V-parameter have numerically been probed by utilizing full vectorial finite element method (FEM) with perfectly matched layers (FMLs) boundary condition. The reported PCF reveals low absorption loss and large effective area of 0.04 cm−1 and 2.80×10−07 m2 respectively at 1 THz operating frequency. In addition, the core power fraction of the fiber is about 50.83 % at the same activation frequency. The V-parameter shows that the proposed PCF acts as a single mode over 0.70 to 1.15 THz frequency. So, the reported PCF offers the best performance in long distance communication applications.


2011 ◽  
Vol 29 (4) ◽  
pp. 511-515 ◽  
Author(s):  
Takashi Matsui ◽  
Taiji Sakamoto ◽  
Kyozo Tsujikawa ◽  
Shigeru Tomita ◽  
Makoto Tsubokawa

2018 ◽  
Vol 7 (3.13) ◽  
pp. 5
Author(s):  
Atta Rahman ◽  
Emeroylariffion RAbas ◽  
Feroza Begum

In this research, the proposed hexagonal photonic crystal fibers design is modelled using the principle of golden ratio; fixing the proportion of pitch to diameter of the air holes constant. Finite element method with perfectly matched layer boundary is used for numerical simulation of different properties. It is shown that the proposed design has lower effective area of below 9 μm2, low chromatic dispersion value of below 57 ps/(km.nm) and confinement loss of less than 0.01 dB/km at 1.55 μm wavelength. The proposed hexagonal photonic crystal fiber is applicable for data transmission systems.  


Sign in / Sign up

Export Citation Format

Share Document