Performance analysis of all optical 2 × 1 multiplexer in 2D photonic crystal structure

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Asghar Askarian

Abstract In optical processing systems, multiplexer is used to design optical devices such as arithmetic logic unit (ALU) and shift register (SR). Through this paper, we investigate the application of nonlinear photonic crystal ring resonator (PhCRR) based on nonlinear Kerr effect for realizing an all optical 2 × 1 multiplexer. The structure consists of two PhCRRs and five optical waveguides using hexagonal lattice silicon (Si) rods with a background of air. Performance of all optical 2 × 1 multiplexer is replicated with the help of finite difference time domain (FDTD) procedure at a wavelength of 1571 nm, and simulations presented an ultra-compact optical structure with ultra-fast switching speed.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamed Azhdari ◽  
Sahel Javahernia

Abstract Increasing the speed of operation in all optical signal processing is very important. For reaching this goal one needs high speed optical devices. Optical half adders are one of the important building blocks required in optical processing. In this paper an optical half adder was proposed by combining nonlinear photonic crystal ring resonators with optical waveguides. Finite difference time domain method wase used for simulating the final structure. The simulation results confirmed that the rise time for the proposed structure is about 1 ps.


2020 ◽  
Vol 41 (3) ◽  
pp. 263-267
Author(s):  
Mohammad Reza Geraili ◽  
Seyed Ebrahim Hosseini

AbstractIn this paper, we aim to design an all-optical structure that can be employed as optical OR/AND logic gates. To do so, a nonlinear photonic crystal-based ring resonator will be designed whose resonant wavelength depends on the variation of optical intensity. Then, by adding some optical waveguides, the optical logic circuit structure will be obtained that can function as optical OR/AND logic gates. The maximum time delay for the proposed structure is about 1.5 ps. Total footprint of the proposed structure is about 372 mm2. The proposed structure has lower time delay, lower footprint and lower optical input power compared with previously proposed structures.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Asghar Askarian

Abstract In this work, the authors investigate the new structure of all optical half subtractor in a two dimensional photonic crystal based on wave interference and phase shift keying technique. The suggested structure is designed using 10 optical waveguides and one defect in the basic structure. The numeral methods such as plane wave expansion and finite difference time domain are used to analyze the proposed structure. According to obtained results, the rise and fall times, the working bit rate, the minimum and maximum values of the normalized power at ON and OFF states for output ports are 0.1 ps, 0.05 ps, 5 Tbit/s, 77 and 17%, respectively. According to results, high switching speed, compactness, low power consumption and ultra-fast operation are the main advantages of designed optical half subtractor compared with the previous structures.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hassan Mamnoon-Sofiani ◽  
Sahel Javahernia

Abstract All optical logic gates are building blocks for all optical data processors. One way of designing optical logic gates is using threshold switching which can be realized by combining an optical resonator with nonlinear Kerr effect. In this paper we showed that a novel structure consisting of nonlinear photonic crystal ring resonator which can be used for realizing optical NAND/NOR and majority gates. The delay time of the proposed NAND/NOR and majority gates are 2.5 ps and 1.5 ps respectively. Finite difference time domain and plane wave expansion methods were used for simulating the proposed optical logic gates. The total footprint of the proposed structure is about 988 μm2.


2018 ◽  
Vol 25 (4) ◽  
pp. 523-531 ◽  
Author(s):  
S. S. Zamanian-Dehkordi ◽  
M. Soroosh ◽  
G. Akbarizadeh

2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Sana Rebhi ◽  
Radhouene Massoudi ◽  
Monia Najjar

AbstractIn this paper, an ultra-fast all-optical modulator, based on a new shape of nonlinear photonic crystal ring resonator, is designed and studied. Numerical methods such as plane wave expansion (PWE) and finite-difference time domain (FDTD) are used to perform simulations. The modulation technique consists of carrier light controlling by means of input light signal and Kerr effect. The investigation of extinction ratio and insertion loss within the carrier input power shows that the choice of 0.7 W is the optimal value of that power to ensure the tradeoff between both characteristics. The suggested modulator demonstrates an excellent extinction ratio about 20.8018, a very low insertion loss of −13.98 and a short switching time about 13.4 ps. According to the obtained results, the modulator can be considered as an ultra-fast and ultra-compact optical component.


Sign in / Sign up

Export Citation Format

Share Document