scholarly journals Influence of organic manure amendments on water repellency, water entry value, and water retention of soil samples from a tropical Ultisol

2016 ◽  
Vol 64 (2) ◽  
pp. 160-166 ◽  
Author(s):  
T.D.P. Liyanage ◽  
D.A.L. Leelamanie

AbstractLowered stability of soil aggregates governed by insufficient organic matter levels has become a major concern in Sri Lanka. Although the use of organic manure with water repellent properties lowers the wetting rates and improves the stability of soil aggregates, its effects on soil hydrophysical properties are still not characterized. Therefore, the objective of this study was to examine the relation of water repellency induced by organic manure amendments to the water entry value and water retention of a Sri Lankan Ultisol. The soil was mixed with ground powders of cattle manure (CM), goat manure (GM),Gliricidia maculata(GL) and hydrophobicCasuarina equisetifolia(CE) leaves to obtain samples ranging from non-repellent to extremely water repellent, in two series. Series I was prepared by mixing GL and CE with soil (5, 10, 25, 50%). Series II consisted of 5% CM, GM, and GL, with (set A) and without (set B) intermixed 2% CE. Water repellency, water entry value, and water retention of samples were determined in the laboratory. Soil-water contact angle increased with increasing organic matter content in all the samples showing positive linear correlations. Although the samples amended with CE showed high soil-water contact angles in series I, set A (without 2% CE) and set B (with 2% CE) in series II did not show a noticeable difference, where >80% of the samples had soil-water contact angles <90°. Water entry value (R2= 0.83–0.92) and the water retention at 150 cm suction (R2= 0.69–0.8) of all the samples increased with increasing soil-water contact angles showing moderate to strong positive linear correlations. However, set A (without 2% CE) and set B (with 2% CE) in series II did not differ noticeably. Water entry value of about 60% the samples was <2.5 cm. Mixing of a small amount (2%) of hydrophobic organic matter with commonly used organic manures slightly increased the water repellency of sample soils, however not up to detrimental levels. It did not generate adverse effects on water entry and increased the water retention. It was clear that intermixing of small quantities of hydrophobic organic manure with organic manures commonly used in Sri Lankan agriculture, would not generate unfavorable impacts on soils.

2020 ◽  
Author(s):  
Rebecca McCerery ◽  
John Woodward ◽  
Glen McHale ◽  
Kate Winter

&lt;p&gt;Hydrophobic soils and sediments have gained significant interest in soil science due to negatively influencing biomass production and as drivers of landslides and enhanced erosion. Whilst natural and fire-induced soil water repellency have been studied, little work has considered how the sediment-water interaction with naturally occurring hydrophobic sediments might change in the presence of oil. Recent advances in materials physics have shown bio-inspired slippery liquid infused porous surfaces (SLIPS) and lubricant impregnated surfaces (LIS) can produce super slippery surfaces with excellent water shedding properties. Here we apply this new understanding to the physics of soil water repellency and address how the presence of oil, whether from contamination or otherwise, might influence water infiltration. We hypothesise that oil impregnating a hydrophobic soil may create stable oil coatings and/or layers that create soil surfaces resistant to water infiltration and with enhanced run-off of water. Using monolayers of sand, silt and clay particles treated with a commercial hydrophobising agent and silicone oil, we created model (oil-free) hydrophobic and oil impregnated hydrophobic soils. Static water contact angles and droplet sliding angles were used to classify their degree of hydrophobicity and ability to shed water. Our results show that in the absence of oil, model hydrophobic soil surfaces with particle sizes below 63&amp;#956;m are superhydrophobic with water droplet contact angles above 150 degrees. In the presence of oil, we observed a sediment-based SLIP/LI surface on particle sizes below 63&amp;#956;m with water contact angles of 90 degrees and droplet sliding angles of below 5 degrees. We also achieved reduced sliding angles compared to the oil-free surfaces, and a conformal layer of oil on all particle sizes. These results support our hypothesis that SLIPS/LIS may occur in natural soil systems. These results have implications for soil water repellency, oil clean up from soil and for processes occurring in other sedimentary environments caused by both naturally occurring and anthropogenic contamination of oils.&lt;/p&gt;


Heritage ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 2668-2675
Author(s):  
Fotios G. Adamopoulos ◽  
Evangelia C. Vouvoudi ◽  
Dimitris S. Achilias ◽  
Ioannis Karapanagiotis

The preservation of cultural heritage monuments and artifacts requires the development of methods to produce water-repellent materials, which can offer protection against the effects of atmospheric water. Fluorosilanes are a very promising class of materials, as they act as precursors for the formation of low surface energy polymer networks. 1H,1H,2H,2H-perfluorooctyl-triethoxysilane is applied on marble, wood and the surfaces of other materials, such as glass, silicon wafer, brass, paper and silk. According to the measurements of static water contact angles, it is reported that superhydrophobicity and enhanced hydrophobicity are achieved on the surfaces of coated marble and wood, respectively. Hydrophobicity and hydrophilicity were observed on the treated surfaces of the other materials. More important, water repellency is achieved on any hydrophobic or superhydrophobic surface, as revealed by the very low sliding angles of water drops. The study is accompanied by colorimetric measurements to evaluate the effects of the treatment on the aesthetic appearances of the investigated materials. Finally, the capillary absorption test and a durability test are applied on treated wood and marble, respectively. 


2018 ◽  
Vol 66 (3) ◽  
pp. 271-278 ◽  
Author(s):  
Nasrollah Sepehrnia ◽  
Olga Fishkis ◽  
Bernd Huwe ◽  
Jörg Bachmann

AbstractThe coupled transport of pollutants that are adsorbed to colloidal particles has always been a major topic for environmental sciences due to many unfavorable effects on soils and groundwater. This laboratory column study was conducted under saturated moisture conditions to compare the hydrophobic character of the suspended and mobilized colloids in the percolates released from a wettable subsoil and a water repellent topsoil. Both soils with different organic matter content were analyzed for wettability changes before and after leaching using sessile drop contact angles as well as water and ethanol sorptivity curves, summarized as repellency index. Hydrophobicity of the effluent suspensions was assessed using the C18 adsorption method. Water repellency level of the repellent soil decreased after leaching but remained on a lower level of water repellency, while, the wettable soil remained wettable. The leached colloids from the repellent soil were predominantly hydrophilic and the percentage of the hydrophobic colloid fraction in the effluent did not systematically changed with time. Total colloid release depended on soil carbon stock but not on soil wettability. Our results suggest that due to the respective character of transported colloids a similar co-transport mechanism for pollutants may occur which does not depend explicitly on soil wettability of the releasing horizon, but could be more affected by total SOM content. Further studies with a wider range of soils are necessary to determine if the dominant hydrophilic character of leached colloids is typical. Due to the mostly hydrophilic colloid character we conclude also that changes in wettability status, i.e. of wettable subsoil horizons due to the leachate, may not necessarily occur very fast, even when the overlaying topsoil is a repellent soil horizon with a high organic matter content.


Soil Research ◽  
2003 ◽  
Vol 41 (2) ◽  
pp. 251 ◽  
Author(s):  
I. McKissock ◽  
R. J. Gilkes ◽  
W. van Bronswijk

In general, water repellency by soil increases with the increase of total organic matter and decreases as the clay and silt contents of the soil increase. The prediction of water repellency from soil organic carbon (OC) content may be improved by examining the types of carbon associated with water repellency. This paper examines the hypothesis that measurement of aliphatic C can provide a better prediction of water repellency than measurement of total OC and also looks at the effects of soil texture on water repellency and the amount of aliphatic C in the soil. DRIFT (diffuse reflectance infrared fourier transform) spectra were measured on sandy soils from the West Midland Sandplains north of Perth in Western Australia. The areas of the aliphatic CH stretching signal (3000–2800/cm) and the OH stretching signal due to kaolin (3750–3570/cm) were used as relative measures of aliphatic carbon and kaolin contents. The relationships of aliphatic C and kaolin to water repellency have been examined and compared with the relationships of water repellency to total OC and clay contents of soil.Hydrophobic organic C as measured by DRIFT gave a better prediction of soil water repellency (r2 = 0.45) than did the total OC (r2 = 0.36). The specific hydrophobicity of organic matter (aliphatic C/OC ratio) increased as sand content increased. However, the direct influence of soil texture on water repellency was of more significance than its indirect influence on the amounts and forms of soil organic matter. A multivariate model including aliphatic C and clay + silt content was the best model for describing water repellency (r2 = 0.58). DRIFT is an effective, rapid method for screening soils for water repellent properties.For individual sand grains there was a weak positive relationship (r2 = 0.26) between the size of the aliphatic CH peak measured from surfaces of sand grains and the water repellency of the grains. A discontinuous aliphatic surface layer was present on the surface of individual sand grains.


2017 ◽  
Vol 65 (1) ◽  
pp. 99-104 ◽  
Author(s):  
Nasrollah Sepehrnia ◽  
Mohammad Ali Hajabbasi ◽  
Majid Afyuni ◽  
Ľubomír Lichner

AbstractThis study explored the effect of soil water repellency (SWR) on soil hydrophysical properties with depth. Soils were sampled from two distinctly wettable and water repellent soil profiles at depth increments from 0-60 cm. The soils were selected because they appeared to either wet readily (wettable) or remain dry (water repellent) under field conditions. Basic soil properties (MWD, SOM, θv) were compared to hydrophysical properties (Ks, Sw, Se, Sww, Swh, WDPT, RIc, RImand WRCT) that characterise or are affected by water repellency. Our results showed both soil and depth affected basic and hydrophysical properties of the soils (p <0.001). Soil organic matter (SOM) was the major property responsible for water repellency at the selected depths (0-60). Water repellency changes affected moisture distribution and resulted in the upper layer (0-40 cm) of the repellent soil to be considerably drier compared to the wettable soil. The water repellent soil also had greater MWDdryand Ks over the entire 0-60 cm depth compared to the wettable soil. Various measures of sorptivity, Sw, Se, Sww, Swh, were greater through the wettable than water repellent soil profile, which was also reflected in field and dry WDPT measurements. However, the wettable soil had subcritical water repellency, so the range of data was used to compare indices of water repellency. WRCT and RImhad less variation compared to WDPT and RIc. Estimating water repellency using WRCT and RIm indicated that these indices can detect the degree of SWR and are able to better classify SWR degree of the subcritical-repellent soil from the wettable soil.


2020 ◽  
Vol 195 ◽  
pp. 02030
Author(s):  
Xin Xing ◽  
Sérgio D.N. Lourenço

Water repellent soils can be naturally promoted (e.g. after wildfires) or synthetically induced by mixing with hydrophobic compounds (e.g. polydimethylsiloxane). The study of soil water repellency has lasted for over one century which implied the significant effect of soil water repellency on water infiltration, evaporation, soil strength, and soil stability. Water repellent soils can also be exploited by geotechnical engineers to offer novel and economical solutions for ground infrastructure. This paper synthesizes different methods for assessing soil water repellency based on varied indexes (e.g. contact angle, time for a drop to infiltrate) and with a focus on water entry pressure. Measurements of these parameters in synthetic water- repellent sands were taken, some results of which are summarized with discussion of key factors affecting water repellency. A comparison of these methods shows that water entry pressure can be more representative for assessing the water repellency of bulk samples.


2013 ◽  
Vol 22 (4) ◽  
pp. 515 ◽  
Author(s):  
Naama Tessler ◽  
Lea Wittenberg ◽  
Noam Greenbaum

Variations in forest fires regime affect: (1) the natural patterns of community structure and vegetation; (2) the physico-chemical properties of soils and consequently (3) runoff, erosion and sediment yield. In recent decades the Mediterranean ecosystem of Mount Carmel, north-western Israel, is subjected to an increasing number of forest fires, thus, the objectives of the study were to evaluate the long-term effects of single and recurrent fires on soil water repellency (WR) and organic matter (OM) content. Water repellency was studied by applying water drop penetration time (WDPT) tests at sites burnt by single-fire, two fires, three fires and unburnt control sites. Water repellency in the burnt sites was significantly lower than in the unburnt control sites, and the soil maintained its wettability for more than 2 decades, whereas after recurrent fires, the rehabilitation was more complicated and protracted. The OM content was significantly lower after recurrent than after a single fire, causing a clear proportional decrease in WR. The rehabilitation of WR to natural values is highly dependent on restoration of organic matter and revegetation. Recurrent fires may cause a delay in recovery and reduced productivity of the soil for a long period.


2014 ◽  
Vol 27 (5) ◽  
pp. 1413-1423 ◽  
Author(s):  
Nicasio T. Jiménez‐Morillo ◽  
José A. González‐Pérez ◽  
Antonio Jordán ◽  
Lorena M. Zavala ◽  
José María Rosa ◽  
...  

2017 ◽  
Author(s):  
Emilia Urbanek ◽  
Stefan H. Doerr

Abstract. Soil CO2 emissions are strongly dependent on water distribution in soil pores, which in turn can be affected by soil water repellency (SWR; hydrophobicity). SWR restricts infiltration and movement of water, affecting soil hydrology as well as biological and chemical processes. Effects of SWR on soil carbon dynamics and specifically on soil respiration (CO2 efflux) have been studied in a few laboratory experiments but they remain poorly understood. Existing studies suggest that soil respiration is reduced in water repellent soils, but the responses of soil CO2 efflux to varying water distribution created by SWR are not yet known. Here we report on the first field-based study that tests whether soil water repellency indeed reduces soil respiration, based on in situ field measurements carried out over three consecutive years at a grassland and pine forest site under the humid temperate climate of the UK. CO2 efflux was reduced on occasions when soil exhibited consistently high SWR and low soil moisture following long dry spells. However, the highest respiration rates occurred not when SWR was absent, but when SWR, and thus soil moisture, was spatially patchy, a pattern observed for the majority of the measurement period. This somewhat surprising phenomenon can be explained by SWR-induced preferential flow, directing water and nutrients to microorganisms decomposing organic matter concentrated in hot spots near preferential flow paths. Water repellent zones provide air-filled pathways through the soil, which facilitate soil-atmosphere O2 and CO2 exchanges. This study demonstrates that SWR have contrasting effects on CO2 fluxes and, when spatially-variable, can enhance CO2 efflux. Spatial variability in SWR and associated soil moisture distribution needs to be considered when evaluating the effects of SWR on soil carbon dynamics under current and predicted future climatic conditions.


2021 ◽  
Author(s):  
Akihisa Yamamoto ◽  
Yuji Higaki ◽  
Judith Thoma ◽  
Esther Kimmle ◽  
Ryohei Ishige ◽  
...  

AbstractComb-like polymers with pendant-like perfluorocarbon side chains self-assemble into smectic lamellae and have been extensively used as water-repellent, hydrophobic coating materials characterized by large water contact angles (θ > 120°). As poly(perfluorooctyl acrylate) films are “apparently hydrophobic” (θ > 120°), the interaction of such materials and water molecules has been largely overlooked. To unravel the molecular-level interactions between water and apparently hydrophobic polymers, specular and off-specular neutron scattering experiments were conducted at defined osmotic pressure ΠH2O. The poly{2-[(perfluorooctylethyl)carbamate]ethyl} acrylate (PFAUr-C8), which had a carbamate linker, transitioned to another lamellar phase at 89 °C. At T = 25 °C; the lamellar periodicity of PFAUr-C8 slightly increased with decreasing osmotic pressure, while the vertical correlation length increased. However, the poly[(perfluorooctyl)ethyl] acrylate (PFA-C8) that did not contain a carbamate linker directly transitioned to a disordered phase at 84 °C. The lamellar periodicity of PFA-C8 was largely independent of the osmotic pressure, suggesting that PFA-C8 was poorly hydrated. Remarkably, the vertical correlation length decreased with decreasing osmotic pressure. Because hydration facilitated by the linker modulated the smectic lamellae of the poly(perfluoroalkyl acrylate), water molecules could be used to optimize the self-assembly of apparently hydrophobic liquid crystalline polymers.


Sign in / Sign up

Export Citation Format

Share Document