Soil water repellency persistence after recurrent forest fires on Mount Carmel, Israel

2013 ◽  
Vol 22 (4) ◽  
pp. 515 ◽  
Author(s):  
Naama Tessler ◽  
Lea Wittenberg ◽  
Noam Greenbaum

Variations in forest fires regime affect: (1) the natural patterns of community structure and vegetation; (2) the physico-chemical properties of soils and consequently (3) runoff, erosion and sediment yield. In recent decades the Mediterranean ecosystem of Mount Carmel, north-western Israel, is subjected to an increasing number of forest fires, thus, the objectives of the study were to evaluate the long-term effects of single and recurrent fires on soil water repellency (WR) and organic matter (OM) content. Water repellency was studied by applying water drop penetration time (WDPT) tests at sites burnt by single-fire, two fires, three fires and unburnt control sites. Water repellency in the burnt sites was significantly lower than in the unburnt control sites, and the soil maintained its wettability for more than 2 decades, whereas after recurrent fires, the rehabilitation was more complicated and protracted. The OM content was significantly lower after recurrent than after a single fire, causing a clear proportional decrease in WR. The rehabilitation of WR to natural values is highly dependent on restoration of organic matter and revegetation. Recurrent fires may cause a delay in recovery and reduced productivity of the soil for a long period.

2014 ◽  
Vol 27 (5) ◽  
pp. 1413-1423 ◽  
Author(s):  
Nicasio T. Jiménez‐Morillo ◽  
José A. González‐Pérez ◽  
Antonio Jordán ◽  
Lorena M. Zavala ◽  
José María Rosa ◽  
...  

2008 ◽  
Vol 3 (Special Issue No. 1) ◽  
pp. S155-S164 ◽  
Author(s):  
N.A Wahl

Soil water repellency has important consequences for ecological and hydrological properties of soils and usually retards infiltration capacity and induces preferential flow. This phenomenon has been known to occur on a wide range of sites under a variety of climatic conditions. The objective of this study was to investigate and characterize soil water repellency on forest sites with identical substrate and climatic conditions, differing in tree age and species. In the Vester Torup Klitplantage, an area comprising a conifer dominated forest plantation stocking on sandy deposits in a coastal setting near the Jammer Bay in north-western Jutland/Denmark, four different forest plots were investigated for water repellency effects four times in 2005. To measure soil water repellency, the water drop penetration time test and the critical surface tension test were carried out. Both tests revealed a seasonal variability in water repellency, exhibiting the highest water repellency for the upper 10 cm of the soil during the summer months, whereas the variability between the different plots seems to be less significant. There was no coherence between humus forms, thickness of litter layer and water repellency.


HortScience ◽  
2014 ◽  
Vol 49 (5) ◽  
pp. 662-666
Author(s):  
Lusheng Zeng ◽  
Jiayang Liu ◽  
Robert N. Carrow ◽  
Paul L. Raymer ◽  
Qingguo Huang

Organic coatings on sand particles can cause soil water repellency (SWR) where a soil does not spontaneously wet; this leads to challenges in water management and crop production. In laboratory studies, we evaluated a novel approach using direct application of 10 enzymes at three (low, medium, high) dosages to remediate SWR on two sand turfgrass soils in a 3-day incubation study and a second study at high dosage with 1-day incubation. A soil:solution ratio of 1:1 (10 g soil and 10 mL solution) was used and a deionized water control included. For Soil 7, a very strongly hydrophobic soil from a localized dry spot turfgrass area with a water drop penetration time (WDPT) of 7440 seconds (untreated) and 332 to 338 seconds (water-treated), the high dosage rates of laccase, chitinase, and protease at 1 and 3 days incubation resulted in WDPT of less than 60 seconds (i.e., hydrophilic soil). Pectinase exhibited similar results only in the 3-day incubation study. On the strongly hydrophobic Soil 21 (WDPT of 655 seconds untreated; 94 to 133 water-treated) from the dry area of a fairy ring-affected area on a turfgrass site, high dosages of chitinase, laccase, pectinase, and protease reduced WDPT to less than 60 seconds in both studies; and medium dosage rates were also effective for all but protease in the 3-day incubation study. Each of the four most effective enzymes for reducing WDPT, noted previously, demonstrated a significant exponential or logarithmic relationship between decreasing WDPT and increasing enzyme dosage. Further studies in field situations will be required to determine enzyme effectiveness on SWR and water management.


2014 ◽  
Vol 2 ◽  
Author(s):  
Alexis Hernández ◽  
Natalia Rodríguez ◽  
Marcelino del Arco ◽  
Carmen Dolores Arbelo ◽  
Jesús Notario del Pino ◽  
...  

Forest fires modify the soil environment, often triggering severe soil degradation. In this paper, we studied the impact of a large northern Tenerife Canariy pine forest wildfire on a set of relevant soil properties, focusing on their evolution in time and relationship with soil water repellency. To do this, soils were sampled at four sites (burned and non-burned) and several soil physical and chemical parameters were measured. The results show significant variations for soil pH, electric conductivity (CE<sub>1:5</sub>), and NH<sub>4</sub><sup>+</sup>-N between burned and non-burned samples, whereas non-significant increases were found in burned soils for oxidizable carbon (C<sub>ox</sub>), total nitrogen (N<sub>tot</sub>) , Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup> and K<sup>+</sup>, and soil hydrophobicity. The differences caused by the fire were no longer evident one year later. Furthermore, in one sampling site (Vitric Leptosols under low pine forest with a mixed heath/beech tree understory) a wide variation in the content of C<sub>ox</sub> and N<sub>tot</sub> and high water repellency was observed relative to the other sites. These differences can be attributed to the composition of the understory vegetation. Significant correlations between soil hydrophobicity with CE<sub>1:5</sub>, aggregate stability and the contents of C<sub>ox</sub>, N<sub>tot</sub>, NH<sub>4</sub><sup>+</sup>-N, Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup> and K<sup>+</sup> were found.


Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Viliam Novák ◽  
Ľubomír Lichner ◽  
Bin Zhang ◽  
Karol Kňava

AbstractThe impact of heating on the peristence of water repellency, saturated hydraulic conductivity, and water retention characteristics was examined on soils from both forest and meadow sites in southwest Slovakia shortly after a wet spell. The top 5 cm of meadow soils had an initial water drop penetration time WDPT at 20°C of 457 s, whereas WDPT in the pine forest was 315 s for the top 5 cm and 982 s if only the top 1 cm was measured. Heating soils at selected temperatures of 50, 100, 150, 200, 250 and 300°C caused a marked drop in water drop penetration time WDPT from the initial value at 20°C. However, samples collected in different years and following an imposed cycle of wetting and drying showed much different trends, with WDPT sometimes initially increasing with temperature, followed by a drop after 200–300°C. The impact of heating temperature on the saturated hydraulic conductivity of soil was small. It was found for both the drying and wetting branches of soil water retention curves that an increase in soil water repellency resulted in a drop in soil water content at the same matric potential. The persistence of soil water repellency was strongly influenced by both the sampling site and time of sampling, as it was characterized by the results of WDPT tests.


Soil Research ◽  
2003 ◽  
Vol 41 (2) ◽  
pp. 251 ◽  
Author(s):  
I. McKissock ◽  
R. J. Gilkes ◽  
W. van Bronswijk

In general, water repellency by soil increases with the increase of total organic matter and decreases as the clay and silt contents of the soil increase. The prediction of water repellency from soil organic carbon (OC) content may be improved by examining the types of carbon associated with water repellency. This paper examines the hypothesis that measurement of aliphatic C can provide a better prediction of water repellency than measurement of total OC and also looks at the effects of soil texture on water repellency and the amount of aliphatic C in the soil. DRIFT (diffuse reflectance infrared fourier transform) spectra were measured on sandy soils from the West Midland Sandplains north of Perth in Western Australia. The areas of the aliphatic CH stretching signal (3000–2800/cm) and the OH stretching signal due to kaolin (3750–3570/cm) were used as relative measures of aliphatic carbon and kaolin contents. The relationships of aliphatic C and kaolin to water repellency have been examined and compared with the relationships of water repellency to total OC and clay contents of soil.Hydrophobic organic C as measured by DRIFT gave a better prediction of soil water repellency (r2 = 0.45) than did the total OC (r2 = 0.36). The specific hydrophobicity of organic matter (aliphatic C/OC ratio) increased as sand content increased. However, the direct influence of soil texture on water repellency was of more significance than its indirect influence on the amounts and forms of soil organic matter. A multivariate model including aliphatic C and clay + silt content was the best model for describing water repellency (r2 = 0.58). DRIFT is an effective, rapid method for screening soils for water repellent properties.For individual sand grains there was a weak positive relationship (r2 = 0.26) between the size of the aliphatic CH peak measured from surfaces of sand grains and the water repellency of the grains. A discontinuous aliphatic surface layer was present on the surface of individual sand grains.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1121 ◽  
Author(s):  
Edyta Hewelke ◽  
Lidia Oktaba ◽  
Dariusz Gozdowski ◽  
Marek Kondras ◽  
Izabella Olejniczak ◽  
...  

Although soil water repellency (SWR) has been reported under different soils, climates, and vegetation types of the world, especially in forest land and following wildfires, the understanding of this variable continues to be rather limited. This study presented the characterization of SWR from wild fire measurements in a Scots pine Peucedano-Pinetum forest in the Kampinos National Park (central Poland), which is characterized by a temperate continental climate. The main objectives were: [i] To evaluate the potential occurrence, intensity, and persistence of soil water repellency in the surface layers of podzolized rusty soils during a dry summer; [ii] to determine whether a wildfire increased SWR, compared to the unburnt condition of soil; and [iii] to identify changes in hydrophobicity 13 months after a fire. The Water Drop Penetration Time (WDPT) test was used to assess persistence and intensity of soil SWR. Hydrophobicity is a natural phenomenon during periods of drought in temperate continental climates. The extreme class of SWR was observed in surface layers of up to 20 cm. A higher hydrophobicity was noted in the older habitats of the Peucedano-Pinetum forest. Maximum WDPT values (10,800 s) were found for an older ecosystem cover, during a dry summer. SWR in fire-affected soils is dependent on the intensity of the fire, as well as displaying spatial and seasonal variability. Thirteen months after a fire, the highest variability in the occurrence of non-wettability, was recorded in the surface layers of areas affected by a weak fire. A positive relationship between soil pH and WDPT values was determined to a 20 cm depth. Prolonged dry periods resulting from global climate change, may enhance the effects of increasing SWR; it therefore seems reasonable for future research on biosphere–climate interactions, to take the presence of hydrophobicity into account.


2012 ◽  
Vol 9 (4) ◽  
pp. 369 ◽  
Author(s):  
I. Atanassova ◽  
S. H. Doerr ◽  
R. Bryant

Environmental contextHeating of soils under wildfires can substantially reduce their ability to absorb rainfall, causing reduced vegetation recovery and increased erosion and flooding. This study examines, for the first time, the chemical changes in soil organic matter associated with heating in the oxygen-limited conditions typical under many wildfires. There was a noticeable tendency for production of non-polar compounds, which may ultimately contribute to a more persistent form of soil water repellency with important implications for managing fire affected terrain. AbstractSoil heating, as experienced during wildfires or management burns, can lead to extreme soil water repellency (WR). Previous work has focussed on the chemical composition of soil organic matter (SOM) that may be associated with WR in natural soil samples or samples heated in air. Under wildfires, however, oxygen supply is typically reduced and previous work has shown that the extreme WR induced under such conditions resists eventual destruction at temperatures ~200 °C higher than that of the same soil heated in air. This study examines, for the first time, the chemical changes in SOM associated with extreme WR following heating under oxygen limited conditions. Extracts obtained by accelerated solvent extraction (ASE), using mixtures of isopropyl alcohol/aqueous ammonia (IPA/NH3) and dichloromethane/methanol (DCM/MeOH), were analysed using gas chromatography–mass spectrometry (GC/MS). The data were compared with the SOM composition of the same soil unheated and following heating in air. In the absence of oxygen during soil heating, phthalic acid esters, substituted benzaldehydes, unsaturated amides and organophosphate esters were produced. In comparison with extracts of the same soil heated in air, there was a decreased methoxyphenol/phenol ratio, suggesting progressive demethoxylation and synthesis of new aromatic structures likely to promote extreme WR in soil.


2020 ◽  
Vol 68 (4) ◽  
pp. 392-403
Author(s):  
Nasrollah Sepehrnia ◽  
Susanne K. Woche ◽  
Marc-O. Goebel ◽  
Jörg Bachmann

AbstractMicroinfiltrometers to assess soil water repellency (SWR) are limited to small tension ranges and have different technical setups, hindering a comparison between results from different laboratories. Hence, a microinfiltrometer which considers various aspects like extent and persistence of SWR is needed. The technical update suggested here uses glass tubes (e.g., 3 mm inner diameter), a fabric of mesh size 15 µm around the tip to enable good contact between soil surface and tip, ultrapure degassed water, and an evaporation protection for tip and reservoir during long-term infiltration. The adjustment of a continuous range of pressures and tensions (i.e., +0.5 to –40 cm) was done using glass tubes of various lengths connected to the tip. Three soil samples with initial contact angles, CA, of 18°, 62°, and 91° after 25°C treatment were additionally treated at 80°C to increase SWR persistence and CA. The soil particle interface chemical composition was determined by X-ray photoelectron spectroscopy (XPS). The hydrophysical properties evaluated included water and ethanol sorptivity as well as very important aspects of SWR, i.e. water drop penetration time, water repellency cessation time, repellency index, and modified repellency index. The results derived from the technically modified microinfiltrometer setup showed consistent differences between initial wettability and the water repellency cessation time as a parameter describing the development of SWR with time. The interface O/C ratio as derived from XPS data was negatively correlated with CA (p <0.05), thus proving the close relationship between interface chemistry and wettability. Our findings illustrated a strong positive correlation (R2 = 0.99, p < 0.05) between sorptivity and O/C ratio under –2 cm tension which can be considered as the universal tension for different aspects of SWR.


Sign in / Sign up

Export Citation Format

Share Document