scholarly journals Uterine blood flow, oxygen uptake, and vascular resistance of pregnant sheep near term

1974 ◽  
Vol 2 (2) ◽  
pp. 101-105 ◽  
Author(s):  
Wolfgang Künzel ◽  
Friedrich Karl Klöck ◽  
Heinz-Dieter Junge ◽  
Waldemar Moll
1976 ◽  
Vol 231 (3) ◽  
pp. 754-759 ◽  
Author(s):  
JH Rankin ◽  
TM Phernetton

The effect of PGE2 on regional blood flows in the chronically catheterized near-term pregnant sheep was investigated using radioactive microspheres. The injection of 20 mug PGE2 per kilogram into the left ventricle of eight sheep resulted in no change in maternal brain and noncotyledonary uterine flow. The renal blood flow increased from 692 to 892 ml/min (P less than 0.004). The uterine blood flow decreased from 673 to 317 ml/min (P less than 0.001). The trium was bypassed by injecting 7 mug PGE2 per kilogram of sheep into a fetal venous catheter and permitting it to reach the placental vasculature after placental transfer. Eleven sets of observations were made in eight animals. We observed no change in the intrauterine pressure, maternal brain flow, and noncotyledonary uterine blood flow secondary to this procedure. The maternal renal blood flow changed from 592 to 669 ml/min (P less than 0.007). The uterine blood flow increased from 762 to 853 ml/min (P less than 0.02). The uterine vascular resistance decreased from 0.124 to 0.115 mmHg x min/ml (P less than 0.04). It was concluded that 1) PGE3 crosses the placenta quite readily, and 2) PGE3 causes dilatation of the maternal placental vascular bed.


1961 ◽  
Vol 16 (6) ◽  
pp. 1087-1092 ◽  
Author(s):  
N. S. Assali ◽  
L. Holm ◽  
H. Parker

The effects of oxytocin on regional blood flow and regional vascular resistance were investigated in a group of pregnant ewes and bitches not in labor and in another group in early labor. Single injections or intravenous drip infusion did not change significantly arterial pressure, cardiac output, electrocardiogram, and renal, iliac, femoral, and carotid blood flows in any of the animals studied. The effects on the pregnant uterus were negligible before the onset of spontaneous labor. Only when the animal was in labor did oxytocin produce an increase in uterine contractions accompanied by a significant decrease in uterine blood flow. The data indicate that in the pregnant sheep and dog the circulatory action of oxytocin is limited to the pregnant uterus in labor and that the decrease in blood flow is probably due to an increase in intramural vascular resistance caused by the contracting myometrium around the uterine arterioles. Submitted on May 5, 1961


1989 ◽  
Vol 257 (1) ◽  
pp. H17-H24 ◽  
Author(s):  
C. R. Rosenfeld ◽  
R. P. Naden

The uteroplacental vasculature is more refractory to angiotensin II (ANG II) than the systemic vasculature as a whole. To ascertain the differences in responses between reproductive and nonreproductive tissues that account for this, we infused ANG II (0.573, 5.73, and 11.5 micrograms/min) in pregnant sheep (137 +/- 5 days of gestation) and monitored arterial pressure (MAP), heart rate, and uterine blood flow (UBF); cardiac output and regional blood flows were measured with radiolabeled microspheres. Dose-dependent changes in MAP, UBF, and systemic (SVR) and uterine (UVR) vascular resistance occurred (P less than 0.05); systemic responses exceeded uterine (P less than 0.05), except with 11.5 micrograms/min, when % delta UVR = % delta SVR, % delta UVR greater than % delta MAP, and UBF fell 29%. Although a dose-dependent rise in placental resistance occurred, blood flow was unaffected except at 11.5 micrograms ANG II/min, falling 16.8 +/- 3.5% (P = 0.059). In contrast, endometrial perfusion decreased 68 +/- 4.2 and 81 +/- 1.8% (P less than 0.01) with 5.73 and 11.5 micrograms ANG II/min, respectively. Myometrial responses were intermediate, thus placental flow increased from 75 to greater than 90% of total UBF. Adipose, renal, and adrenal glands were extremely sensitive to ANG II, with blood flows decreasing maximally at 0.573 micrograms/min (P less than 0.05). Maximum adipose vascular resistance occurred at 0.573 micrograms/min, greater than 400% (P less than 0.001), exceeding responses in all tissues (P less than 0.05). The placenta is less responsive to ANG II than other uterine and most nonreproductive tissues, resulting in preferential maintenance of uteroplacental perfusion and protecting the fetus from the effects of this vasoconstrictor.


1990 ◽  
Vol 259 (1) ◽  
pp. H197-H203 ◽  
Author(s):  
K. E. Clark ◽  
G. L. Irion ◽  
C. E. Mack

Although the uterine vascular responses to endogenous vasoactive substances have been extensively investigated in pregnant sheep, the fetal umbilical responses to angiotensin II (ANG II) and norepinephrine (NE) have not been well characterized. Twenty-five pregnant ewes between 105 and 115 days of gestation were anesthetized and instrumented for hemodynamic measurements, systemic fetal and maternal intravenous infusions, and local maternal uterine arterial infusions of ANG II and NE. Fetal and maternal arterial pressure and heart rate, maternal uterine blood flow (total of left and right middle uterine arteries), and fetoplacental blood flow (common umbilical artery) were measured during continuous infusions of ANG II or NE. Fetal infusions of ANG II (0.03–1.0 micrograms.min-1.kg estimated fetal body wt-1) increased fetal arterial blood pressure by as much as 44% over base-line values, decreased umbilical blood flow by as much as 63%, and increased umbilical vascular resistance by up to 345%. Fetal infusions of NE (0.1–3 micrograms.min-1.kg-1) increased fetal arterial pressure 42% and increased umbilical vascular resistance by up to 38% but did not significantly alter fetoplacental blood flow. No significant maternal changes were observed during fetal infusions. Maternal infusion of ANG II increased maternal arterial pressure by as much as 59% and significantly increased uterine vascular resistance at the two highest doses but significantly decreased uterine blood flow only at the highest dose (17%; P less than 0.05). Maternal infusions of NE increased arterial pressure by as much as 113%, decreased uterine blood flow by as much as 76%, and increased uterine vascular resistance 3- to 10-fold over the base-line value.(ABSTRACT TRUNCATED AT 250 WORDS)


1977 ◽  
Vol 5 (1) ◽  
pp. 39-55 ◽  
Author(s):  
Heinz-Dieter Junge ◽  
Wolfgang Künzel ◽  
Friedrich Karl Klöck

1988 ◽  
Vol 65 (6) ◽  
pp. 2420-2426 ◽  
Author(s):  
A. D. Bocking ◽  
R. Gagnon ◽  
K. M. Milne ◽  
S. E. White

Experiments were conducted in unanesthetized, chronically catheterized pregnant sheep to determine the fetal behavioral response to prolonged hypoxemia produced by restricting uterine blood flow. Uterine blood flow was reduced by adjusting a vascular occluder placed around the maternal common internal iliac artery to decrease fetal arterial O2 content from 6.1 +/- 0.3 to 4.1 +/- 0.3 ml/dl for 48 h. Associated with the decrease in fetal O2 content, there was a slight increase in fetal arterial PCO2 and decrease in pH, which were both transient. There was an initial inhibition of both fetal breathing movements and eye movements but no change in the pattern of electrocortical activity. After this initial inhibition there was a return to normal incidence of both fetal breathing movements and eye movements by 16 h of the prolonged hypoxemia. These studies indicate that the chronically catheterized sheep fetus is able to adapt behaviorally to a prolonged decrease in arterial O2 content secondary to the restriction of uterine blood flow.


1976 ◽  
Vol 41 (5) ◽  
pp. 727-733 ◽  
Author(s):  
A. M. Walker ◽  
G. K. Oakes ◽  
R. Ehrenkranz ◽  
M. McLaughlin ◽  
R. A. Chez

Changes in the uterine and umbilical circulations during induced hypercapnia were studied in nine unanesthetized near-term pregnant sheep. Blood flows were measured with electromagnetic flow transducers and arterial pressures with vascular catheters implanted under anesthesia 2–16 days prior to experiments. Hypercapnia was induced in the fetus alone by giving acetazolamide iv to the fetus, 100–200 mg/kg. Mean fetal arterial Pco2 increased from49.5 to 63.4 mmHg but no significant changes in umbilical blood flowoccurred. Stepwise increases in both maternal and fetal arterial Pco2 were induced by increasing maternal inspired CO2 concentration to a maximum of 12%. Nodignificant changes occurred in uterine or umbilical circulations until hypercapnia was severe (maternal arterial Pco2 greater than 60 mmHg, fetal arterial Pco2 greater than 70 mmHg). With severe hypercapnia uterine vascular resistance increased significantly and uterine blood flow decreased despitean increase in maternal arterial pressure; fetal arterial pressure and umbilical blood flow increased significantly, but umbilical vascular resistancedid not. We conclude that hypercapnia in conscious pregnant sheep is associated with significant changes in uterine and umbilical circulations, but only when hypercapnia is severe. Carbon dioxide is unlikely to be a factor innormal physiological regulation of the uteroplacental circulation in this species.


2004 ◽  
pp. 497-502 ◽  
Author(s):  
Danja Str??mper ◽  
Wiebke Gogarten ◽  
Marcel E. Durieux ◽  
Kristian Hartleb ◽  
Hugo Van Aken ◽  
...  

1999 ◽  
Vol 11 (5) ◽  
pp. 201 ◽  
Author(s):  
Suzanne L. Miller ◽  
Graham Jenkin ◽  
David W. Walker

The effect of maternal hyperthermia on uterine blood flow (UBF) through the two main uterine arteries and on the proportion of UBF shunted through uterine arteriovenous anastomoses (AVAs) was investigated. Eight late-pregnant ewes were exposed to normothermic (22–23˚C) or hyperthermic (approx-imately 39˚C) ambient conditions for 8 h. UBF was measured in the left and right uterine arteries using flow probes and microspheres were injected into the uterine artery before, during and after the experimental period. The distribution of microspheres between the uterus and lungs was determined to calculate changes in capillary and AVA blood flows. Hyperthermia produced a significant (P<0.05) increase in maternal core temperature (+1.5˚C), increase in maternal blood pH (+0.21; P<0.05) and decrease in maternal pCO 2 (–16.2 mmHg; P<0.05). Blood flow to the uterine horn ipsilateral to the corpus luteum (CL) remained unchanged during hyperthermia, whereas total UBF and blood flow to the contralateral uterine horn were significantly decreased (P<0.05), by 23.1% and 20.8%, respectively, of pre-heat control values. The proportion of UBF shunted through uterine AVAs during hyperthermia was not significantly different from values observed in normothermic ewes (21.9 0.7%). Mild to moderate hyperthermia in late-pregnant sheep induces respiratory alkalosis and decreases total blood flow to the uterus, brought about by a decrease in blood flow to the uterine horn contralateral, but not ipsilateral to the CL. Heat treatment does not alter the proportion of UBF traversing uterine AVAs.


1995 ◽  
Vol 268 (2) ◽  
pp. R303-R309 ◽  
Author(s):  
S. B. Hooper ◽  
D. W. Walker ◽  
R. Harding

Our aim was to compare the effects of short (4 h) and prolonged (24 h) periods of reduced uterine blood flow (RUBF) on fetal and placental uptake of O2, glucose, and lactate. In pregnant sheep, uterine and umbilical blood flows were measured under normal conditions and after 4 and 24 h of RUBF. A 50% reduction in uterine blood flow caused a 56% reduction in fetal arterial O2 saturation (SaO2). Umbilical blood flow increased from 325 +/- 33 to 378 +/- 32 ml.min-1.kg-1 (P < 0.05) after 4 h but was not different from pre-RUBF values after 24 h. O2 uptake by the gravid uterus was not altered by RUBF, due to an increase (84%) in uterine O2 extraction. Similarly, uteroplacental and fetal O2 consumptions and fetal glucose uptake were not affected by RUBF, whereas uteroplacental glucose uptake was significantly reduced after 4 h (by 42%) and 24 h (by 58%) of RUBF. Fetal lactate uptake was greatly reduced from 78.7 +/- 15.5 to -167 +/- 57 mumol.min-1.kg-1 after 4 h and to -198 +/- 80 mumol.min-1.kg-1 after 24 h of RUBF; negative values indicate placental lactate uptake from the fetal circulation. Thus, although RUBF significantly reduced fetal SaO2, fetal and uteroplacental O2 consumptions did not change. In addition, although fetal glucose uptake was not altered by RUBF, during RUBF the placenta became a major site of lactate clearance from the fetal circulation.


Sign in / Sign up

Export Citation Format

Share Document