scholarly journals Improvement of bio-compatible AZ61 magnesium alloy corrosion resistance by fluoride conversion coating

2016 ◽  
Vol 60 (5) ◽  
pp. 132-138 ◽  
Author(s):  
J. Drábiková ◽  
F. Pastorek ◽  
S. Fintová ◽  
P. Doležal ◽  
J. Wasserbauer

Abstract Magnesium and its alloys are perspective bio-degradable materials used mainly due to their mechanical properties similar to those of mammal bones. Potential problems in utilization of magnesium alloys as bio-materials may relate to their rapid degradation which is associated with resorption problems and intensive hydrogen evolution. These problems can be eliminated by magnesium alloys surface treatment. Therefore, this work aims with analysis of the influence of fluoride conversion coating on corrosion characteristics of magnesium alloy. Unconventional technique by insertion of wrought magnesium alloy AZ61 into molten Na[BF4] salt at temperature of 450 °C at different treatment times was used for fluoride conversion coating preparation. The consequent effect of the coating on magnesium alloy corrosion was analyzed by means of linear polarization in simulated body fluid solution at 37 ± 2 °C. The obtained results prove that this method radically improve corrosion resistance of wrought AZ61magnesium alloy even in the case of short time of coating preparation.

2016 ◽  
Vol 60 (4) ◽  
pp. 101-106 ◽  
Author(s):  
J. Tkacz ◽  
K. Slouková ◽  
J. Minda ◽  
J. Drábiková ◽  
S. Fintová ◽  
...  

Abstract Corrosion behavior of wrought magnesium alloys AZ31 and AZ61 was studied in Hank’s solution. Potentiodynamic curves measured after short-term of exposure showed higher corrosion resistance of AZ31 magnesium alloy in comparison with AZ61 magnesium alloy. On the contrary, long-term tests measured by electrochemical impedance spectroscopy showed higher corrosion resistance of AZ61 magnesium alloy in comparison with AZ31 magnesium alloy.


2015 ◽  
Vol 3 (8) ◽  
pp. 1667-1676 ◽  
Author(s):  
Jiadi Sun ◽  
Ye Zhu ◽  
Long Meng ◽  
Wei Wei ◽  
Yang Li ◽  
...  

Self-assembled nanoparticles loaded with bioactive agents were electrodeposited to provide the magnesium alloy with controlled release and corrosion resistance properties.


2011 ◽  
Vol 194-196 ◽  
pp. 1221-1224 ◽  
Author(s):  
Zhong Jun Wang ◽  
Yang Xu ◽  
Jing Zhu

The microstructures and corrosion resistance of AZ91 and AZ91+0.5 wt.% erbium (Er) magnesium alloys were studied, respectively. The results show that the Er addition in scrap AZ91 magnesium alloy can improve the corrosion resistance, markedly. The discontinuous precipitation phase (DPP) for Mg17Al12was retarded and the amount of DPP was decreased by 41% due to the formation of Al8ErMn4phase during solidification. The amount of continuous precipitation phase (CPP) in grains was decreased by 8% because of the formation of Al7ErMn5phase during solidification.


2018 ◽  
Vol 6 (43) ◽  
pp. 6936-6949 ◽  
Author(s):  
Hao Zhang ◽  
Lingxia Xie ◽  
Xiaolong Shen ◽  
Tengda Shang ◽  
Rifang Luo ◽  
...  

A catechol/polyethyleneimine conversion coating on a MgZnMn alloy possessed good corrosion resistance. Heparin was further grafted on it and this showed the potential for surface modification of magnesium-based vascular implants.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1078-1082 ◽  
Author(s):  
Yang Yang Lv ◽  
Ling Feng Zhang

Magnesium alloy as a green material in the 21st century, because of its excellent physical and mechanical properties of metallic materials as an ideal in the automotive industry, electronic industry and aviation, aerospace and other industries[1]. However, poor corrosion resistance of magnesium alloys become an important issue hinder application of magnesium alloys[2]. So magnesium alloy corrosion problems and the current status of research paper reviews several magnesium alloy protection methods at home and abroad, and also highlighted with our latest laser shock (LSP) study of AZ91 magnesium alloy at high strain rates of corrosion resistance results.


Sign in / Sign up

Export Citation Format

Share Document