hank’s solution
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 46)

H-INDEX

22
(FIVE YEARS 4)

2021 ◽  
Vol 16 (59) ◽  
pp. 129-140
Author(s):  
Hadda Rezzag ◽  
Latifa Kahloul ◽  
Hacène Chadli ◽  
Alima Mebrek ◽  
Adel Saoudi

The present work focuses on the Tribological properties and corrosion behavior evaluation of sintered CoCrMo alloy. The CoCrMo alloy was elaborated by Powder metallurgy process at various sintering temperatures (1200°C, 1250°C and 1300°C). The structural properties were characterized by X-ray diffraction and scanning electron microscopy. The tribological characteristics were measured using a dry disc-ball tribometer. The corrosion behavior of the samples was studied using different electrochemical tests in a simulated physiological environment (Hank’s solution). The obtained results show that higher sintering temperatures have a positive impact on the tribological behavior as well as the corrosion resistance of CoCrMo alloys. The sintered samples at 1300°C showed a better resistance to friction wear and a lower corrosion rate.


Author(s):  
Huafang Li ◽  
Jinyan Huang ◽  
Peng Zhang ◽  
Qi Zhang

AbstractAs a potential biodegradable implant material, zinc (Zn) alloys have attracted increasing attention due to their good biocompatibility and moderate degradation rate. Zn and its alloys are expected to become candidate materials for medical devices. The metals implanted in the human body will inevitably undergo friction in the human body before it is completely degraded. Friction and wear are essential factors which may cause medical devices’ service failure. However, there are still few studies on the friction and wear properties of biodegradable Zn-based alloys in the human body, and most studies just focus on the mechanical properties, degradation properties and biocompatibility of the alloys. Thus, it is crucial to study the friction and wear properties of Zn and its alloys. In the present work, we investigated the tribological properties of biodegradable pure Zn and Zn-X (Li, Cu, Ge) alloys. Our study found that under simulated body fluid and dry friction conditions, the addition of alloying elements Li and Cu can improve the friction properties of Zn. Among the four metals, Zn-0.5Li alloy has the lowest friction coefficient and the best wear resistance. Hank’s solution has lubricating and corrosive effects. That is to say, when the alloy is rubbed in Hank’s solution, it can not only be protected by the lubrication of the solution, but also tribocorrosion will occur as well.


2021 ◽  
pp. 109975
Author(s):  
Li Lei ◽  
Zhongyu Cui ◽  
Hui Pan ◽  
Kun Pang ◽  
Xin Wang ◽  
...  

2021 ◽  
Vol 31 (10) ◽  
pp. 2999-3011
Author(s):  
Xue-jian WANG ◽  
Zong-ning CHEN ◽  
Yu-bo ZHANG ◽  
En-yu GUO ◽  
Hui-jun KANG ◽  
...  

2021 ◽  
Vol 8 (9) ◽  
pp. 210243
Author(s):  
Jun-Min Zhang ◽  
Zong-Yan Zhao ◽  
Qing-Hua Chen ◽  
Xing-Hu Chen ◽  
Yin-He Li

This work systematically analysed the electrochemical and corrosion behaviour of Ti-Ta-Ag ternary alloy samples in Hank's solution. For the samples with 1.5% and 3% Ag content, the sintering temperature increased from 750 to 950°C, and the corresponding corrosion resistance increased by 100 times due to the increased alloying of Ag; meanwhile for the sample with 4.5% Ag content, the sintering temperature increased from 750 to 950°C, and the corresponding corrosion resistance decreased by six times due to the increased precipitation of Ag. These tests prove that the Ag alloying is beneficial to the enhancement of the corrosion resistance of Ti-Ta-Ag ternary alloy, but the Ag trace precipitation has the opposite effect. A series of electrochemical characterizations and density functional theory calculations explain the mechanism of the above phenomenon. Ag alloying can promote the formation of uniform, complete, dense, stable and thick passivation layer on the surface of Ti-Ta-Ag ternary alloy, which makes Ti-Ta-Ag ternary alloy uniformly corroded without pitting. In addition, Ag alloying can effectively reduce the contact resistance of the solid–liquid interface. However, the trace precipitation of Ag plays the opposite role to the above effect.


2021 ◽  
Vol 22 (15) ◽  
pp. 8301
Author(s):  
Iryna Kozina ◽  
Halina Krawiec ◽  
Maria Starowicz ◽  
Magdalena Kawalec

Chitosan coatings are deposited on the surface of Mg20Zn magnesium alloy by means of the spin coating technique. Their structure was investigated using Fourier Transform Infrared Spectroscopy (FTIR) an X-ray photoelectron spectroscopy (XPS). The surface morphology of the magnesium alloy substrate and chitosan coatings was determined using Scanning Electron Microscope (FE-SEM) analysis. Corrosion tests (linear sweep voltamperometry and chronoamperometry) were performed on uncoated and coated magnesium alloy in the Hank’s solution. In both cases, the hydrogen evolution method was used to calculate the corrosion rate after 7-days immersion in the Hank’s solution at 37 °C. It was found that the corrosion rate is 3.2 mm/year and 1.2 mm/year for uncoated and coated substrates, respectively. High corrosion resistance of Mg20Zn alloy covered by multilayer coating (CaP coating + chitosan water glass) is caused by formation of CaSiO3 and Ca3(PO4)2 compounds on its surface.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4289
Author(s):  
Shineng Sun ◽  
Guo Ye ◽  
Ziting Lu ◽  
Yuming Weng ◽  
Guofeng Ma ◽  
...  

Newly developed Zn-Mn-Mg alloys can be invoked as biomedical materials because of their excellent mechanical properties. However, the corrosion behavior of Zn-Mn-Mg alloys was still lacking in research. It had grown to be a hot research topic to improve the corrosion behavior of Zn alloys by surface treatment to meet the application of degradable Zn alloys in biomedical applications. Micro arc oxidation (MAO) is a simple and effective method to improve the corrosion behavior of the alloy. MAO coatings were successfully prepared on the surface of Zn-Mn-Mg alloys by MAO in silicate-based solutions with different NaF concentrations. The microstructure and phase composition of MAO coatings prepared on Zn-Mn-Mg alloys with different NaF concentrations in the electrolyte was examined by a scanning electron microscope and X-ray diffraction. The results showed that the MAO coatings are porous and mainly composed of ZnO. With the increasing NaF concentration in the electrolyte, the average thickness increases. The distribution of the micro/nanopores was uniform, and the pore size ranged from the submicron scale to several micrometers after MAO treatment in the electrolyte containing different concentrations of NaF. Potential dynamic polarization curves and electrochemical impedance spectroscopy were employed to assess the corrosion behavior of MAO coatings in Hank’s solution. The highest corrosion rate can be achieved after MAO treatment, with an electrolyte concentration of 1.5 g/L NaF in Hank’s solution. These results indicated that MAO coating can accelerate the corrosion resistance of a Zn-Mn-Mg alloy.


2021 ◽  
Vol 27 (S1) ◽  
pp. 1574-1576
Author(s):  
Abraham Mejia ◽  
Luis Bejar Gómez ◽  
Claudio Aguilar ◽  
Andres Bejar ◽  
Carolina Parra González ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Hanan Ali Hameed ◽  
Haider Ali Hasan ◽  
Mohammad Khursheed Alam

Background. This paper reports the corrosion behavior of uncoated commercially pure titanium and Ti-6Al-4V samples and these coated with hydroxyapatite, partial stabilized zirconia (PSZ), and the mixture of partial stabilized zirconia and hydroxyl-apatite by measuring passivation current density and see if there are any differences between them using electrochemical polarization tests in 37°C Hank’s solution. Materials and Methods. The electrophoretic deposition method (EPD) was elected to keep the coating materials which are HA, PSZ, and the mixture of 50% HA and 50% PSZ on Cp Ti and Ti-6Al-4V alloy samples. The electrochemical corrosion test was achieved by exposing the coated and uncoated samples to Hank’s solution which prepared in the laboratory and measuring the polarization potential, passivation current density, and the open circuit potential for all samples. Results. The results indicated that the passivation current density for all Cp Ti and Ti-6Al-4V alloy groups that coated with HA, PSZ, and with mixture of 50/50 HA and PSZ was less than uncoated groups. There are no significant differences between all Cp Ti groups when compared with all Ti-6Al-4 V alloy groups. The open circuit potential (OCP) for both Cp Ti and Ti -6Al -4V samples was in the following sequence PSZ > HA > mixture of HA and PSZ > uncoated . Conclusions. Coating significantly decreased the passivation current density of Cp Ti and Ti-6Al-4V alloy.


Sign in / Sign up

Export Citation Format

Share Document