Understory use by terrestrial small mammals in an unflooded forest patch in the Pantanal floodplain

Mammalia ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Nayara Yoshie Sano ◽  
Heitor Miraglia Herrera ◽  
Grasiela Edith de Oliveira Porfirio ◽  
Filipe Martins Santos

AbstractTo date, there have been no studies that have evaluated small mammal utilization of the understory of forests. In this study, we described the use of vertical strata by small mammals in patches of unflooded forests, known as “cordilheiras”, in the Nhecolândia sub-region of the Pantanal, Brazil. We collected all species using the ground and understory, including the terrestrial didelphid Monodelphis domestica. We suppose that local habitat features (e.g., Acuri palms), rather than intrinsic species characteristics, may be more conducive to the use of understory vegetation by small mammals in the Nhecolândia region.

Mammalia ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Zewdneh Tomass ◽  
Simon Shibru ◽  
Meheretu Yonas ◽  
Aberham Megaze ◽  
Zerihun Woldu ◽  
...  

AbstractThis study investigated the spatio-temporal association of small mammals in human-modified habitats. Small mammals were sampled using Sherman traps along 200 m transects (with one trap at every 10 m interval) in each of four habitats (cropland, forest patch, scrubland and wetland) replicated twice. Additional trapping was carried out in rural settlements comprising of eight homesteads, with five traps per homestead. Trapping was conducted in three sessions during the agricultural seasons: rainy (October), off-rain (December) and dry (February) over two years (2018 and 2019). In each session, trapping was carried out for three consecutive nights. A total of 497 small mammals belonging to 12 species from four families (Soricidae, Macroscelididae, Gliridae and Muridae) were captured. Murine rodents accounted for 99.4% of the animals with Mastomys erythroleucus (58%) being the dominant species. The scrubland had the highest small mammal species diversity while the cropland had the lowest. M. erythroleucus was not strongly associated with any spatio-temporal parameter and scored majority of seasonally reproducing individuals in the cropland, signifying its pest importance. Though disconnected from protected areas, habitats such as the scrubland harbor diverse small mammal species (including a vulnerable-endemic species, Grammomys minnae), suggesting the habitats’ significance for ecosystem functioning and conservation.


Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 346
Author(s):  
Linas Balčiauskas ◽  
Laima Balčiauskienė ◽  
Andrius Garbaras ◽  
Vitalijus Stirkė

The stability of diversity of syntopic (inhabiting the same habitat in the same time) small mammals in commensal habitats, such as farmsteads and kitchen gardens, and, as a proxy of their diet, their isotopic niches, was investigated in Lithuania in 2019–2020. We tested whether the separation of species corresponds to the trophic guilds, whether their diets are related to possibilities of getting additional food from humans, and whether their diets are subject to seasonal trends. We analyzed diversity, dominance and distribution of hair δ13C and δ15N values. Diversity and dominance was not stable and differed according to human influence. The highest small mammal species richness occurred in commensal habitats that provided additional food. The degree of separation of species was higher in homestead habitats than in kitchen gardens, where a 1.27 to 35.97% overlap of isotopic niches was observed between pairs of species. Temporal changes in δ13C and δ15N values in the hair of the mammals were not equally expressed in different species. The isotopic overlap may depend on dietary plasticity, minimizing interspecific competition and allowing co-existence of syntopic species. Thus, small mammal trophic ecology is likely related to intensity of agricultural activities in the limited space of commensal habitats.


2011 ◽  
Vol 6 (3) ◽  
pp. 446-456 ◽  
Author(s):  
Marija Kataržytė ◽  
Ernestas Kutorga

AbstractThe diets of small mammals in different hemiboreal spruce-dominated, oak-dominated and mixed forests in western part of Lithuania were studied by examination of fungal spores in fresh fecal pellets of caught animals. In the diets of mice (Apodemus spp.), bank voles (Myodes glareolus), and common and pygmy shrews (Sorex araneus and S. minutus), 22 different fungal taxa were identified, 15 of which were hypogeous fungi. The sporocarp abundance and the spores in fecal samples of Elaphomyces fungi prevailed in study area during this investigation. Although most of the captured individuals consumed fungi, the consumption varied among small mammal species. The data show that the fungi were more frequent and taxonomically diverse in Myodes glareolus than in Apodemus spp. diets. The study provided evidence that the fungal component in the diets of insectivorous Sorex species is more diverse than previously known. The availability of sporocarps and the fungal component in the diets of small mammals showed seasonal effects. Annual hypogeous and epigeous sporocarp abundances did not vary significantly across forest types. The significant difference in mycophagy was observed across all forest cover types, with the greatest fungal diversity in fecal samples collected in mixed coniferous-deciduous tree stands.


2021 ◽  
pp. 175815592110660
Author(s):  
Jenő J Purger ◽  
Dávid Szép

The relative abundance of small mammal species detected from Common Barn-owl pellets reflects the landscape structure and habitat pattern of the owl’s hunting area, but it is also affected by the size of the collected pellet sample and the size of the supposed hunting area. The questions arise: how many pellets should be collected and analyzed as well as how large hunting area should be taken into consideration in order to reach the best correspondence between the owl’s prey composition and the distribution of habitats preferred by small mammals preyed in supposed hunting areas? For this study, we collected 1045 Common Barn-owl pellets in a village in southern Hungary. All detected small mammal species were classified into functional groups (guilds) preferring urban, open, forest and wetland habitats. The proportion of functional groups was compared to the proportion of these habitats around the pellet collection site within circles of one, two, and three km radius. Saturation curves showed that at least 300 pellets or ca. 600 mammalian remains are required for the detection of the 19 small mammal species. The share of small mammals detected in the prey and their functional groups according to their habitat preference showed an increasing consistency with the distribution of real habitats in the potential hunting area of a radius of 3 km around the owl’s breeding or resting place.


1983 ◽  
Vol 61 (5) ◽  
pp. 970-980 ◽  
Author(s):  
Arthur M. Martell

Changes in small mammal communities following logging were monitored in clear-cut and strip-cut upland black spruce (Picea mariana) stands and in selectively cut mixed wood stands in north-central Ontario. Clear-cutting and subsequent scarification essentially eliminated the vegetative cover. Much of the ground cover recovered within 5 years and shrubs within 12 years, but mosses and lichens took much longer. The small mammal community in both clear-cut and strip-cut stands changed over the first three years after logging from one dominated by southern red-backed voles (Clethrionomys gapperi) to one dominated by deer mice (Peromyscus maniculatus) and then remained relatively stable for up to 13 years after harvest. That shift was not apparent in selectively cut mixed wood stands where the composition of the small mammal community was similar between uncut stands and stands 4–23 years after harvest. There was relatively little change in total numbers of small mammals after logging. In general, the diversity and evenness of small mammals increased or remained stable in the first 1–3 years following harvest, decreased on older (3–16 years) cuts, and then increased to values similar to those in uncut stands on the oldest (19–23 years) cuts.


1982 ◽  
Vol 47 (4) ◽  
pp. 822-829 ◽  
Author(s):  
Peter W. Stahl

Analysis of the dissected remains of certain small mammals suggests a consistently high ratio of edible meat to live weight. These figures, together with the great abundance of small mammals in natural and culturally modified settings, are combined to support the argument that they may have been important elements in prehistoric diet. Their dietary status may be consistently underestimated because of a number of biases.


Koedoe ◽  
2006 ◽  
Vol 49 (1) ◽  
Author(s):  
M. Van Deventer ◽  
J.A.J. Nel

The effect of habitat differences and food availability on small mammal (rodent and elephant shrew) species richness, diversity, density and biomass was investigated in Namaqualand, South Africa. Species richness in the three habitats sampled, namely Upland Succulent Karoo, Dry Riverine Shrub and North-western Mountain Renosterveld was low, with only 2–4 species per habitat. Rodents trapped were predominantly Gerbillurus paeba and Aethomys namaquensis, with fewer Mus minutoides and Petromyscus sp. The only non-rodent was the elephant shrew Elephantulus edwardii. Ten habitat features, the percentage of total plant cover, tree cover, shrub cover, grass cover, plant litter, total basal cover, sand, gravel or rock cover, and the dominant plant height were recorded at 30 randomly chosen points on five sampling grids in each habitat. Small mammal density and biomass was significantly correlated with food availability (green foliage cover, seeds, and relative density and biomass of insects). Species richness and diversity of small mammals were significantly correlated with shrub cover. Numbers and biomass of specific species correlated significantly with different habitat features in each case.


Author(s):  
Didier L. Baho ◽  
Stina Drakare ◽  
Richard K. Johnson ◽  
Craig R. Allen ◽  
David G. Angeler

<p>Research focusing on biodiversity responses to the interactions of ecosystem size and anthropogenic stressors are based mainly on correlative gradient studies, and may therefore confound size-stress relationships due to spatial context and differences in local habitat features across ecosystems. We investigated how local factors related to anthropogenic stressors (<em>e.g.,</em> eutrophication) interact with ecosystem size to influence species diversity. In this study, constructed lake mesocosms (with two contrasting volumes: 1020 (shallow mesocosms) and 2150 (deep mesocosms) litres) were used to simulate ecosystems of different size and manipulated nutrient levels to simulate mesotrophic and hypertrophic conditions. Using a factorial design, we assessed how the interaction between ecosystem size and nutrients influences phytoplankton diversity. We assessed community metrics (richness, diversity, evenness and total biovolumes) and multivariate community structure over a growing season (May to early November 2011). Different community structures were found between deep and shallow mescosoms with nutrient enrichment: Cyanobacteria dominated in the deep and Charophyta in the shallow mesocosms. In contrast, phytoplankton communities were more similar to each other in the low nutrient treatments; only Chlorophyta had generally a higher biovolume in the shallow compared to the deep mesocosms. These results suggest that ecosystem size is not only a determinant of species diversity, but that it can mediate the influence of anthropogenic effects on biodiversity. Such interactions increase the uncertainty of global change outcomes, and should therefore not be ignored in risk/impact assessment and management.</p>


2011 ◽  
Vol 89 (12) ◽  
pp. 1214-1222 ◽  
Author(s):  
Ashley A.D. McLaren ◽  
Lenore Fahrig ◽  
Nigel Waltho

Previous studies suggest the gap in forest cover generated by roads contributes to the barrier effect of roads on movement of forest-dwelling small mammals. However, it is not known if vegetated medians of divided highways affect movement of small mammals by reducing the effective highway width. The purpose of our study was to determine whether the type of vegetation cover in the median (treed or grassy) or median width affects small-mammal crossings of divided highways. At 11 study sites varying in median cover type and width, we live-trapped small mammals next to one side of the highway and translocated them to the opposite side of the highway using a standardized translocation distance. In total, 24% of translocated individuals were recaptured on the side of the highway of initial capture, i.e., they had moved across the entire highway. This was significantly lower than what would have been expected in the absence of the highway (58%). The overall probability of recapturing a translocated individual was not significantly related to median cover type or width. Our results suggest that efforts to mitigate the barrier effect of highways on small mammals cannot be accomplished by altering median vegetation type and width.


2020 ◽  
Vol 39 (3) ◽  
pp. 260-269 ◽  
Author(s):  
Ivan Baláž ◽  
Martina Zigová

AbstractThe landscape of south-western Slovakia is characterised by anthropogenous reshaping, while fragments of undisturbed, waterlogged habitats have been preserved in what remains of the meandering ancient Žitava River. These refuges are inhabited by various small mammal species and their blood-sucking ectoparasites. Between 2014 and 2018, research on them was carried out in Slovakia’s Danubian Lowland (Podunajská nížina) during three out of the four seasons (spring, summer and autumn). The small mammals were captured at 27 localities. The occurrence of nine flee species from the Hystrichopsyllidae, Ctenophthalmidae and Ceratophyllidae families was documented on 12 small burrowing mammals. During the course of all the seasons in which research was conducted, Ctenophthalmus agyrtes, C. assimilis, Megabothris turbidus a Nosopsyllus fasciatus were found, among the most dominant species to be seen on small burrowing mammals.


Sign in / Sign up

Export Citation Format

Share Document