Complexity issues for the symmetric interval eigenvalue problem

2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Milan Hladík

AbstractWe study the problem of computing the maximal and minimal possible eigenvalues of a symmetric matrix when the matrix entries vary within compact intervals. In particular, we focus on computational complexity of determining these extremal eigenvalues with some approximation error. Besides the classical absolute and relative approximation errors, which turn out not to be suitable for this problem, we adapt a less known one related to the relative error, and also propose a novel approximation error. We show in which error factors the problem is polynomially solvable and in which factors it becomes NP-hard.

1983 ◽  
Vol 66 ◽  
pp. 331-341
Author(s):  
M. Knölker ◽  
M. Stix

AbstractThe differential equations describing stellar oscillations are transformed into an algebraic eigenvalue problem. Frequencies of adiabatic oscillations are obtained as the eigenvalues of a banded real symmetric matrix. We employ the Cowling-approximation, i.e. neglect the Eulerian perturbation of the gravitational potential, and, in order to preserve selfadjointness, require that the Eulerian pressure perturbation vanishes at the outer boundary. For a solar model, comparison of first results with results obtained from a Henyey method shows that the matrix method is convenient, accurate, and fast.


2019 ◽  
Vol 7 (1) ◽  
pp. 263-271
Author(s):  
Brian D. Sutton

Abstract We consider a structured inverse eigenvalue problem in which the eigenvalues of a real symmetric matrix are specified and selected entries may be constrained to take specific numerical values or to be nonzero. This includes the problem of specifying the graph of the matrix, which is determined by the locations of zero and nonzero entries. In this article, we develop a numerical method for constructing a solution to the structured inverse eigenvalue problem. The problem is recast as a constrained optimization problem over the orthogonal manifold, and a numerical optimization routine seeks its solution.


2021 ◽  
Vol 54 (1-2) ◽  
pp. 141-151
Author(s):  
Dragan Živanović ◽  
Milan Simić

An implementation of a two-stage piece-wise linearization method for reduction of the thermocouple approximation error is presented in the paper. First, the whole thermocouple measurement chain of a transducer is described, and possible error is analysed to define the required level of accuracy for linearization of the transfer characteristics. Evaluation of linearization functions and analysis of approximation errors are performed by the virtual instrumentation software package LabVIEW. The method is appropriate for thermocouples and other sensors where nonlinearity varies a lot over the range of input values. The basic principle of this method is to first transform the abscissa of the transfer function by a linear segment look-up table in such a way that significantly nonlinear parts of the input range are expanded before a standard piece-wise linearization. In this way, applying equal-segment linearization two times has a similar effect to non-equal-segment linearization. For a given examples of the thermocouple transfer functions, the suggested method provides significantly better reduction of the approximation error, than the standard segment linearization, with equal memory consumption for look-up tables. The simple software implementation of this two-stage linearization method allows it to be applied in low calculation power microcontroller measurement transducers, as a replacement of the standard piece-wise linear approximation method.


1986 ◽  
Vol 9 (3) ◽  
pp. 323-342
Author(s):  
Joseph Y.-T. Leung ◽  
Burkhard Monien

We consider the computational complexity of finding an optimal deadlock recovery. It is known that for an arbitrary number of resource types the problem is NP-hard even when the total cost of deadlocked jobs and the total number of resource units are “small” relative to the number of deadlocked jobs. It is also known that for one resource type the problem is NP-hard when the total cost of deadlocked jobs and the total number of resource units are “large” relative to the number of deadlocked jobs. In this paper we show that for one resource type the problem is solvable in polynomial time when the total cost of deadlocked jobs or the total number of resource units is “small” relative to the number of deadlocked jobs. For fixed m ⩾ 2 resource types, we show that the problem is solvable in polynomial time when the total number of resource units is “small” relative to the number of deadlocked jobs. On the other hand, when the total number of resource units is “large”, the problem becomes NP-hard even when the total cost of deadlocked jobs is “small” relative to the number of deadlocked jobs. The results in the paper, together with previous known ones, give a complete delineation of the complexity of this problem under various assumptions of the input parameters.


2021 ◽  
Vol 13 (2) ◽  
pp. 1-20
Author(s):  
Sushmita Gupta ◽  
Pranabendu Misra ◽  
Saket Saurabh ◽  
Meirav Zehavi

An input to the P OPULAR M ATCHING problem, in the roommates setting (as opposed to the marriage setting), consists of a graph G (not necessarily bipartite) where each vertex ranks its neighbors in strict order, known as its preference. In the P OPULAR M ATCHING problem the objective is to test whether there exists a matching M * such that there is no matching M where more vertices prefer their matched status in M (in terms of their preferences) over their matched status in M *. In this article, we settle the computational complexity of the P OPULAR M ATCHING problem in the roommates setting by showing that the problem is NP-complete. Thus, we resolve an open question that has been repeatedly and explicitly asked over the last decade.


Algorithmica ◽  
2021 ◽  
Author(s):  
Alexander Grigoriev ◽  
Tim A. Hartmann ◽  
Stefan Lendl ◽  
Gerhard J. Woeginger

AbstractWe study a continuous facility location problem on a graph where all edges have unit length and where the facilities may also be positioned in the interior of the edges. The goal is to position as many facilities as possible subject to the condition that any two facilities have at least distance $$\delta$$ δ from each other. We investigate the complexity of this problem in terms of the rational parameter $$\delta$$ δ . The problem is polynomially solvable, if the numerator of $$\delta$$ δ is 1 or 2, while all other cases turn out to be NP-hard.


Author(s):  
Nikta Shayanfar ◽  
Heike Fassbender

The polynomial eigenvalue problem is to find the eigenpair of $(\lambda,x) \in \mathbb{C}\bigcup \{\infty\} \times \mathbb{C}^n \backslash \{0\}$ that satisfies $P(\lambda)x=0$, where $P(\lambda)=\sum_{i=0}^s P_i \lambda ^i$ is an $n\times n$ so-called matrix polynomial of degree $s$, where the coefficients $P_i, i=0,\cdots,s$, are $n\times n$ constant matrices, and $P_s$ is supposed to be nonzero. These eigenvalue problems arise from a variety of physical applications including acoustic structural coupled systems, fluid mechanics, multiple input multiple output systems in control theory, signal processing, and constrained least square problems. Most numerical approaches to solving such eigenvalue problems proceed by linearizing the matrix polynomial into a matrix pencil of larger size. Such methods convert the eigenvalue problem into a well-studied linear eigenvalue problem, and meanwhile, exploit and preserve the structure and properties of the original eigenvalue problem. The linearizations have been extensively studied with respect to the basis that the matrix polynomial is expressed in. If the matrix polynomial is expressed in a special basis, then it is desirable that its linearization be also expressed in the same basis. The reason is due to the fact that changing the given basis ought to be avoided \cite{H1}. The authors in \cite{ACL} have constructed linearization for different bases such as degree-graded ones (including monomial, Newton and Pochhammer basis), Bernstein and Lagrange basis. This contribution is concerned with polynomial eigenvalue problems in which the matrix polynomial is expressed in Hermite basis. In fact, Hermite basis is used for presenting matrix polynomials designed for matching a series of points and function derivatives at the prescribed nodes. In the literature, the linearizations of matrix polynomials of degree $s$, expressed in Hermite basis, consist of matrix pencils with $s+2$ blocks of size $n \times n$. In other words, additional eigenvalues at infinity had to be introduced, see e.g. \cite{CSAG}. In this research, we try to overcome this difficulty by reducing the size of linearization. The reduction scheme presented will gradually reduce the linearization to its minimal size making use of ideas from \cite{VMM1}. More precisely, for $n \times n$ matrix polynomials of degree $s$, we present linearizations of smaller size, consisting of $s+1$ and $s$ blocks of $n \times n$ matrices. The structure of the eigenvectors is also discussed.


2007 ◽  
Vol 14 (01) ◽  
pp. 97-102 ◽  
Author(s):  
Q. Mushtaq ◽  
U. Hayat

We show that the matrix A(g), representing the element g = ((xy)2(xy2)2)m (m ≥ 1) of the modular group PSL(2,Z) = 〈x,y : x2 = y3 = 1〉, where [Formula: see text] and [Formula: see text], is a 2 × 2 symmetric matrix whose entries are Pell numbers and whose trace is a Pell–Lucas number. If g fixes elements of [Formula: see text], where d is a square-free positive number, on the circuit of the coset diagram, then d = 2 and there are only four pairs of ambiguous numbers on the circuit.


Sign in / Sign up

Export Citation Format

Share Document