scholarly journals On the Golomb’s conjecture and Lehmer’s numbers

2017 ◽  
Vol 15 (1) ◽  
pp. 1003-1009 ◽  
Author(s):  
Wang Tingting ◽  
Wang Xiaonan

Abstract Let p be an odd prime. For each integer a with 1 ≤ a ≤ p − 1, it is clear that there exists one and only one ā with 1 ≤ ā ≤ p − 1 such that a · ā ≡ 1 mod p. Let N(p) denote the set of all primitive roots a mod p with 1 ≤ a ≤ p − 1 in which a and ā are of opposite parity. The main purpose of this paper is using the analytic method and the estimate for the hybrid exponential sums to study the solvability of the congruence a + b ≡ 1 mod p with a, b ∈ N(p), and give a sharper asymptotic formula for the number of the solutions of the congruence equation.

2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
Jianghua Li ◽  
Tingting Wang

The main purpose of this paper is using the analytic method, A. Weil’s classical work for the upper bound estimate of the general exponential sums, and the properties of Gauss sums to study the hybrid mean value problem involving Dedekind sums and the general exponential sums and give a sharp asymptotic formula for it.


2018 ◽  
Vol 16 (1) ◽  
pp. 955-966
Author(s):  
Shimeng Shen

AbstractThe main purpose of this paper is to study the computational problem of one kind hybrid power mean involving two-term exponential sums and quartic Gauss sums using the analytic method and the properties of the classical Gauss sums, and to prove some interesting fourth-order linear recurrence formulae for this problem. As an application of our result, we can also obtain an exact computational formula for one kind congruence equation modp, an odd prime.


2015 ◽  
Vol 67 (3) ◽  
pp. 597-638 ◽  
Author(s):  
Sary Drappeau

AbstractAn integer is said to be y–friable if its greatest prime factor is less than y. In this paper, we obtain estimates for exponential sums over y–friable numbers up to x which are non–trivial when y ≥ . As a consequence, we obtain an asymptotic formula for the number of y-friable solutions to the equation a + b = c which is valid unconditionally under the same assumption. We use a contour integration argument based on the saddle point method, as developped in the context of friable numbers by Hildebrand and Tenenbaum, and used by Lagarias, Soundararajan and Harper to study exponential and character sums over friable numbers.


2016 ◽  
Vol 14 (1) ◽  
pp. 436-442
Author(s):  
Chang Leran ◽  
Li Xiaoxue

AbstractIn this paper, we use the mean value theorem of Dirichlet L-functions, the properties of Gauss sums and Dedekind sums to study the hybrid mean value problem involving Dedekind sums and the two-term exponential sums, and give an interesting identity and asymptotic formula for it.


Author(s):  
G. R. Everest

AbstractA well-known theorem of Hardy and Littlewood gives a three-term asymptotic formula, counting the lattice points inside an expanding, right triangle. In this paper a generalisation of their theorem is presented. Also an analytic method is developed which enables one to interpret the coefficients in the formula. These methods are combined to give a generalisation of a “heightcounting” formula of Györy and Pethö which itself was a generalisation of a theorem of Lang.


2020 ◽  
Vol 69 ◽  
pp. 225-246
Author(s):  
D. R. Heath-Brown

Christopher Hooley was one of the leading analytic number theorists of his day, world-wide. His early work on Artin’s conjecture for primitive roots remains the definitive investigation in the area. His greatest contribution, however, was the introduction of exponential sums into every corner of analytic number theory, bringing the power of Deligne’s ‘Riemann hypothesis’ for varieties over finite fields to bear throughout the subject. For many he was a figure who bridged the classical period of Hardy and Littlewood with the modern era. This biographical sketch describes how he succeeded in applying the latest tools to famous old problems.


2011 ◽  
Vol 54 (1) ◽  
pp. 155-162 ◽  
Author(s):  
ZHANG WENPENG

AbstractLet q > 1 be an odd integer and c be a fixed integer with (c, q) = 1. For each integer a with 1 ≤ a ≤ q − 1, it is clear that there exists one and only one b with 0 ≤ b ≤ q − 1 such that ab ≡ c (mod q). Let N(c, q) denotes the number of all solutions of the congruence equation ab ≡ c (mod q) for 1 ≤ a, b ≤ q − 1 in which a and b are of opposite parity, where b is defined by the congruence equation bb ≡ 1(modq). The main purpose of this paper is using the mean value theorem of Dirichlet L-functions to study the mean value properties of a summation involving (N(c, q) − φ(q)) and Ramanujan's sum, and give two exact computational formulae.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Han Zhang ◽  
Wenpeng Zhang

The main purpose of this paper is to use the analytic methods and the properties of Gauss sums to study the computational problem of one kind fourth power mean of two-term exponential sums and give an interesting identity and asymptotic formula for it.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Liu Miaohua ◽  
Li Xiaoxue

The main purpose of this paper is using the properties of Gauss sums and the estimate for character sums to study the hybrid mean value problem involving the two-term exponential sums and two-term character sums and give an interesting asymptotic formula for it.


2021 ◽  
Vol 6 (10) ◽  
pp. 10989-11004
Author(s):  
Wenpeng Zhang ◽  
◽  
Jiafan Zhang ◽  

<abstract><p>We consider the calculation problem of one kind hybrid power mean involving the character sums of polynomials and two-term exponential sums modulo $ p $, an odd prime, and use the analytic method and the properties of classical Gauss sums to give some identities and asymptotic formulas for them.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document