scholarly journals Stability and Hopf bifurcation periodic orbits in delay coupled Lotka-Volterra ring system

2019 ◽  
Vol 17 (1) ◽  
pp. 962-978
Author(s):  
Rina Su ◽  
Chunrui Zhang

Abstract In this paper, we consider a class of delay coupled Lotka-Volterra ring systems. Based on the symmetric bifurcation theory of delay differential equations and representation theory of standard dihedral groups, properties of phase locked periodic solutions are given. Moreover, the direction and the stability of the Hopf bifurcation periodic orbits are obtained by using normal form and center manifold theory. Finally, the research results are verified by numerical simulation.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xinhong Pan ◽  
Min Zhao ◽  
Chuanjun Dai ◽  
Yapei Wang

A delay differential system is investigated based on a previously proposed nutrient-phytoplankton model. The time delay is regarded as a bifurcation parameter. Our aim is to determine how the time delay affects the system. First, we study the existence and local stability of two equilibria using the characteristic equation and identify the condition where a Hopf bifurcation can occur. Second, the formulae that determine the direction of the Hopf bifurcation and the stability of periodic solutions are obtained using the normal form and the center manifold theory. Furthermore, our main results are illustrated using numerical simulations.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Yuanyuan Chen ◽  
Ya-Qing Bi

A delay-differential modelling of vector-borne is investigated. Its dynamics are studied in terms of local analysis and Hopf bifurcation theory, and its linear stability and Hopf bifurcation are demonstrated by studying the characteristic equation. The stability and direction of Hopf bifurcation are determined by applying the normal form theory and the center manifold argument.


2021 ◽  
Vol 31 (14) ◽  
Author(s):  
Ruimin Zhang ◽  
Xiaohui Liu ◽  
Chunjin Wei

In this paper, we study a classic mutualistic relationship between the leaf cutter ants and their fungus garden, establishing a time delay mutualistic system with stage structure. We investigate the stability and Hopf bifurcation by analyzing the distribution of the roots of the associated characteristic equation. By means of the center manifold theory and normal form method, explicit formulae are derived to determine the stability, direction and other properties of bifurcating periodic solutions. Finally, some numerical simulations are carried out for illustrating the theoretical results.


2011 ◽  
Vol 110-116 ◽  
pp. 3382-3388
Author(s):  
Zhang Li

In this paper, we investigate a delayed three-species food chain model. The existence and stability of equilibria are obtained. A explicit algorithm for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by using the normal form and the center manifold theory.


2010 ◽  
Vol 44-47 ◽  
pp. 1682-1686
Author(s):  
Song Shi Shao ◽  
Jiong Sun ◽  
Kai Liu

There are several nonlinear elements in the equations of Autonomous Underwater Vehicle(AUV) movements. It is difficult to deal nonlinear problem with traditional methods. A hydrodynamic parameter interference is chosen as bifurcation parameter at first. Then the sailing stability of AUV with proportional-derivative controller is analysed by bifurcation theory. The center manifold theory is used to get the expression of system state parameters. And the Hopf bifurcation of system is analysed. The result is verified by numerical simulations. It shows that the hydrodynamic parameter’s changing will bring Hopf bifurcation for depthkeeping saiiling. And the range of hydrodynamic parameter value that insures AUV sailing stability is given.


2016 ◽  
Vol 26 (06) ◽  
pp. 1650100 ◽  
Author(s):  
Hong-Bing Chen ◽  
Xiao-Ke Sun

In this paper, a system of neural networks in neutral form with time delay is investigated. Further, by introducing delay [Formula: see text] as a bifurcation parameter, it is found that Hopf bifurcation occurs when [Formula: see text] is across some critical values. The direction of the Hopf bifurcations and the stability are determined by using normal form method and center manifold theory. Next, the global existence of periodic solution is established by using a global Hopf bifurcation result. Finally, an example is given to support the theoretical predictions.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

A delayed SIQR computer virus model is considered. It has been observed that there exists a critical value of delay for the stability of virus prevalence by choosing the delay as a bifurcation parameter. Furthermore, the properties of the Hopf bifurcation such as direction and stability are investigated by using the normal form method and center manifold theory. Finally, some numerical simulations for supporting our theoretical results are also performed.


2013 ◽  
Vol 5 (2) ◽  
pp. 146-162
Author(s):  
Jing-Jun Zhao ◽  
Jing-Yu Xiao ◽  
Yang Xu

AbstractThis paper is concerned with the Hopf bifurcation analysis of tumor-immune system competition model with two delays. First, we discuss the stability of state points with different kinds of delays. Then, a sufficient condition to the existence of the Hopf bifurcation is derived with parameters at different points. Furthermore, under this condition, the stability and direction of bifurcation are determined by applying the normal form method and the center manifold theory. Finally, a kind of Runge-Kutta methods is given out to simulate the periodic solutions numerically. At last, some numerical experiments are given to match well with the main conclusion of this paper.


1997 ◽  
Vol 119 (2) ◽  
pp. 158-165 ◽  
Author(s):  
Amir Khajepour ◽  
M. Farid Golnaraghi ◽  
Kirsten A. Morris

In this paper we consider the problem of regulation of a flexible lumped parameter beam. The controller is an active/passive mass-spring-dashpot mechanism which is free to slide along the beam. In this problem the plant/controller equations are coupled and nonlinear, and the linearized equations of the system have two uncontrollable modes associated with a pair of pure imaginary eigenvalues. As a result, linear control techniques as well as most conventional nonlinear control techniques can not be applied. In earlier studies Golnaraghi (1991) and Golnaraghi et al. (1994) a control strategy based on Internal resonance was developed to transfer the oscillatory energy from the beam to the slider, where it was dissipated through controller damping. Although these studies provided very good understanding of the control strategy, the analytical method was based on perturbation techniques and had many limitations. Most of the work was based on numerical techniques and trial and error. In this paper we use center manifold theory to address the shortcomings of the previous studies, and extend the work to a more general control law. The technique is based on reducing the dimension of system and simplifying the nonlinearities using center manifold and normal forms techniques, respectively. The simplified equations are used to investigate the stability and to develop a relation for the optimal controller/plant natural frequencies at which the maximum transfer of energy occurs. One of the main contributions of this work is the elimination of the trial and error and inclusion of damping in the optimal frequency relationship.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 243
Author(s):  
Biao Liu ◽  
Ranchao Wu

The Gierer-Meinhardt system is one of the prototypical pattern formation models. The bifurcation and pattern dynamics of a spatiotemporal discrete Gierer-Meinhardt system are investigated via the couple map lattice model (CML) method in this paper. The linear stability of the fixed points to such spatiotemporal discrete system is analyzed by stability theory. By using the bifurcation theory, the center manifold theory and the Turing instability theory, the Turing instability conditions in flip bifurcation and Neimark–Sacker bifurcation are considered, respectively. To illustrate the above theoretical results, numerical simulations are carried out, such as bifurcation diagram, maximum Lyapunov exponents, phase orbits, and pattern formations.


Sign in / Sign up

Export Citation Format

Share Document