scholarly journals Approximation properties of tensor norms and operator ideals for Banach spaces

2020 ◽  
Vol 18 (1) ◽  
pp. 1698-1708
Author(s):  
Ju Myung Kim

Abstract For a finitely generated tensor norm α \alpha , we investigate the α \alpha -approximation property ( α \alpha -AP) and the bounded α \alpha -approximation property (bounded α \alpha -AP) in terms of some approximation properties of operator ideals. We prove that a Banach space X has the λ \lambda -bounded α p , q {\alpha }_{p,q} -AP ( 1 ≤ p , q ≤ ∞ , 1 / p + 1 / q ≥ 1 ) (1\le p,q\le \infty ,1/p+1/q\ge 1) if it has the λ \lambda -bounded g p {g}_{p} -AP. As a consequence, it follows that if a Banach space X has the λ \lambda -bounded g p {g}_{p} -AP, then X has the λ \lambda -bounded w p {w}_{p} -AP.

1991 ◽  
Vol 44 (1) ◽  
pp. 75-90 ◽  
Author(s):  
David P. Blecher

AbstractTogether with Vern Paulsen we were able to show that the elementary theory of tensor norms of Banach spaces carries over to operator spaces. We suggested that the Grothendieck tensor norm program, which was of course enormously important in the development of Banach space theory, be carried out for operator spaces. Some of this has been done by the authors mentioned above, and by Effros and Ruan. We give alternative developments of some of this work, and otherwise continue the tensor norm program.


2022 ◽  
Author(s):  
◽  
Long Qian

<p><b>We investigate the geometry of effective Banach spaces, namely a sequenceof approximation properties that lies in between a Banach space having a basis and the approximation property.</b></p> <p>We establish some upper bounds on suchproperties, as well as proving some arithmetical lower bounds. Unfortunately,the upper bounds obtained in some cases are far away from the lower bound.</p> <p>However, we will show that much tighter bounds will require genuinely newconstructions, and resolve long-standing open problems in Banach space theory.</p> <p>We also investigate the effectivisations of certain classical theorems in Banachspaces.</p>


2003 ◽  
Vol 93 (2) ◽  
pp. 297 ◽  
Author(s):  
Vegard Lima

We prove that a Banach space $X$ has the metric approximation property if and only if $\mathcal F(Y,X)$ is an ideal in $\mathcal L(Y,X^{**})$ for all Banach spaces $Y$. Furthermore, $X^*$ has the metric approximation property if and only if for all Banach spaces $Y$ and all Hahn-Banach extension operators $\phi : X^* \rightarrow X^{***}$ there exists a Hahn-Banach extension operator $\Phi : {\mathcal F(Y,X)}^* \rightarrow {\mathcal L(Y,X^{**})}^*$ such that $\Phi(x^* \otimes y^{**}) = (\phi x^*) \otimes y^{**}$ for all $x^* \in X^*$ and all $y^{**} \in Y^{**}$. We also prove that $X^*$ has the approximation property if and only if for all Banach spaces $Y$ and all Hahn-Banach extension operators $\phi : X^* \rightarrow X^{***}$ there exists a Hahn-Banach extension operator $\Phi : {\mathcal F(Y,X)}^* \rightarrow {\mathcal W(Y,X^{**})}^*$ such that $\Phi(x^* \otimes y^{**}) = (\phi x^*) \otimes y^{**}$ for all $x^* \in X^*$ and all $y^{**} \in Y^{**}$, which in turn is equivalent to $\mathcal F(Y,\hat{X})$ being an ideal in $\mathcal W(Y,\hat{X}^{**})$ for all Banach spaces $Y$ and all equivalent renormings $\hat{X}$ of $X$.


Author(s):  
Eve Oja ◽  
Indrek Zolk

Let a, c ≥ 0 and let B be a compact set of scalars. We show that if X is a Banach space such that the canonical projection π from X*** onto X* satisfies the inequalityand 1 ≤ λ < max |B| + c, then every λ-commuting bounded compact approximation of the identity of X is shrinking. This generalizes a theorem by Godefroy and Saphar from 1988. As an application, we show that under the conditions described above both X and X* have the metric compact approximation property (MCAP). Relying on the Willis construction, we show that the commuting MCAP does not imply the approximation property.


2022 ◽  
Author(s):  
◽  
Long Qian

<p><b>We investigate the geometry of effective Banach spaces, namely a sequenceof approximation properties that lies in between a Banach space having a basis and the approximation property.</b></p> <p>We establish some upper bounds on suchproperties, as well as proving some arithmetical lower bounds. Unfortunately,the upper bounds obtained in some cases are far away from the lower bound.</p> <p>However, we will show that much tighter bounds will require genuinely newconstructions, and resolve long-standing open problems in Banach space theory.</p> <p>We also investigate the effectivisations of certain classical theorems in Banachspaces.</p>


Author(s):  
Hans-Olav Tylli

Special operator-ideal approximation properties (APs) of Banach spaces are employed to solve the problem of whether the distance functions S ↦ dist(S*, I(F*, E*)) and S ↦ dist(S, I*(E, F)) are uniformly comparable in each space L(E, F) of bounded linear operators. Here, I*(E, F) = {S ∈ L(E, F) : S* ∈ I(F*, E*)} stands for the adjoint ideal of the closed operator ideal I for Banach spaces E and F. Counterexamples are obtained for many classical surjective or injective Banach operator ideals I by solving two resulting ‘asymmetry’ problems for these operator-ideal APs.


1992 ◽  
Vol 34 (2) ◽  
pp. 229-239 ◽  
Author(s):  
Yu. V. Selivanov

Let E be a Banach space, and let N(E) be the Banach algebra of all nuclear operators on E. In this work, we shall study the homological properties of this algebra. Some of these properties turn out to be equivalent to the (Grothendieck) approximation property for E. These include:(i) biprojectivity of N(E);(ii) biflatness of N(E);(iii) homological finite-dimensionality of N(E);(iv) vanishing of the three-dimensional cohomology group, H3(N(E), N(E)).


2018 ◽  
Vol 61 (3) ◽  
pp. 449-457
Author(s):  
Trond A. Abrahamsen ◽  
Petr Hájek ◽  
Olav Nygaard ◽  
Stanimir L. Troyanski

AbstractWe show that if x is a strongly extreme point of a bounded closed convex subset of a Banach space and the identity has a geometrically and topologically good enough local approximation at x, then x is already a denting point. It turns out that such an approximation of the identity exists at any strongly extreme point of the unit ball of a Banach space with the unconditional compact approximation property. We also prove that every Banach space with a Schauder basis can be equivalently renormed to satisfy the suõcient conditions mentioned.


2012 ◽  
Vol 110 (1) ◽  
pp. 45 ◽  
Author(s):  
Åsvald Lima ◽  
Vegard Lima ◽  
Eve Oja

Let $X$ be a Banach space and let $\mathcal I$ be the Banach operator ideal of integral operators. We prove that $X$ has the $\lambda$-bounded approximation property ($\lambda$-BAP) if and only if for every operator $T\in \mathcal I(X,C[0,1]^*)$ there exists a net $(S_\alpha)$ of finite-rank operators on $X$ such that $S_\alpha\to I_X$ pointwise and 26767 \limsup_\alpha\|TS_\alpha\|_{\mathcal I}\leq\lambda\|T\|_{\mathcal I}. 26767 We also prove that replacing $\mathcal I$ by the ideal $\mathcal N$ of nuclear operators yields a condition which is equivalent to the weak $\lambda$-BAP.


2010 ◽  
Vol 53 (4) ◽  
pp. 690-705
Author(s):  
M. E. Puerta ◽  
G. Loaiza

AbstractThe classical approach to studying operator ideals using tensor norms mainly focuses on those tensor norms and operator ideals defined by means of ℓp spaces. In a previous paper, an interpolation space, defined via the real method and using ℓp spaces, was used to define a tensor norm, and the associated minimal operator ideals were characterized. In this paper, the next natural step is taken, that is, the corresponding maximal operator ideals are characterized. As an application, necessary and sufficient conditions for the coincidence of the maximal and minimal ideals are given. Finally, the previous results are used in order to find some new metric properties of the mentioned tensor norm.


Sign in / Sign up

Export Citation Format

Share Document