scholarly journals Hodge-Deligne polynomials of character varieties of free abelian groups

2021 ◽  
Vol 19 (1) ◽  
pp. 338-362
Author(s):  
Carlos Florentino ◽  
Jaime Silva

Abstract Let F F be a finite group and X X be a complex quasi-projective F F -variety. For r ∈ N r\in {\mathbb{N}} , we consider the mixed Hodge-Deligne polynomials of quotients X r / F {X}^{r}\hspace{-0.15em}\text{/}\hspace{-0.08em}F , where F F acts diagonally, and compute them for certain classes of varieties X X with simple mixed Hodge structures (MHSs). A particularly interesting case is when X X is the maximal torus of an affine reductive group G G , and F F is its Weyl group. As an application, we obtain explicit formulas for the Hodge-Deligne and E E -polynomials of (the distinguished component of) G G -character varieties of free abelian groups. In the cases G = G L ( n , C ) G=GL\left(n,{\mathbb{C}}\hspace{-0.1em}) and S L ( n , C ) SL\left(n,{\mathbb{C}}\hspace{-0.1em}) , we get even more concrete expressions for these polynomials, using the combinatorics of partitions.

Author(s):  
BJÖRN SCHUSTER

For any fixed prime p and any non-negative integer n there is a 2(pn − 1)-periodic generalized cohomology theory K(n)*, the nth Morava K-theory. Let G be a finite group and BG its classifying space. For some time now it has been conjectured that K(n)*(BG) is concentrated in even dimensions. Standard transfer arguments show that a finite group enjoys this property whenever its p-Sylow subgroup does, so one is reduced to verifying the conjecture for p-groups. It is easy to see that it holds for abelian groups, and it has been proved for some non-abelian groups as well, namely groups of order p3 ([7]) and certain wreath products ([3], [2]). In this note we consider finite (non-abelian) 2-groups with maximal normal cyclic subgroup, i.e. dihedral, semidihedral, quasidihedral and generalized quaternion groups of order a power of two.


1996 ◽  
Vol 16 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Fabio Fagnani

AbstractIn this paper we study expansive automorphisms of compact 0-dimensional abelian groups. Our main result is the complete algebraic and topological classification of the transitive expansive automorpisms for which the maximal order of the elements isp2for a primep. This yields a classification of the transitive expansive automorphisms with topological entropy logp2. Finally, we prove a necessary and sufficient condition for an expansive automorphism to be conjugated, topologically and algebraically, to a shift over a finite group.


1979 ◽  
Vol 20 (1) ◽  
pp. 57-70 ◽  
Author(s):  
J.R. McMullen ◽  
J.F. Price

A duality theory for finite abelian hypergroups over fairly general fields is presented, which extends the classical duality for finite abelian groups. In this precise sense the set of conjugacy classes and the set of characters of a finite group are dual as hypergroups.


1969 ◽  
Vol 21 ◽  
pp. 684-701 ◽  
Author(s):  
Benson Samuel Brown

Our aim in this paper is to prove the general mod ℭ suspension theorem: Suppose that X and Y are CW-complexes,ℭ is a class offinite abelian groups, and that(i) πi(Y) ∈ℭfor all i < n,(ii) H*(X; Z) is finitely generated,(iii) Hi(X;Z) ∈ℭfor all i > k.Then the suspension homomorphismis a(mod ℭ) monomorphism for 2 ≦ r ≦ 2n – k – 2 (when r= 1, ker E is a finite group of order d, where Zd∈ ℭ and is a (mod ℭ) epimorphism for 2 ≦ r ≦ 2n – k – 2The proof is basically the same as the proof of the regular suspension theorem. It depends essentially on (mod ℭ) versions of the Serre exact sequence and of the Whitehead theorem.


Author(s):  
Martin W. Liebeck

AbstractA permutation group G on a finite set Ω is always exposable if whenever G stabilises a switching class of graphs on Ω, G fixes a graph in the switching class. Here we consider the problem: given a finite group G, which permutation representations of G are always exposable? We present solutions to the problem for (i) 2-generator abelian groups, (ii) all abelian groups in semiregular representations. (iii) generalised quaternion groups and (iv) some representations of the symmetric group Sn.


2020 ◽  
Vol 71 (3) ◽  
pp. 1009-1047
Author(s):  
Patrick Le Meur

Abstract Let $R$ be the skew group algebra of a finite group acting on the path algebra of a quiver. This article develops both theoretical and practical methods to do computations in the Morita-reduced algebra associated to $R$. Reiten and Riedtmann proved that there exists an idempotent $e$ of $R$ such that the algebra $eRe$ is both Morita equivalent to $R$ and isomorphic to the path algebra of some quiver, which was described by Demonet. This article gives explicit formulas for the decomposition of any element of $eRe$ as a linear combination of paths in the quiver described by Demonet. This is done by expressing appropriate compositions and pairings in a suitable monoidal category, which takes into account the representation theory of the finite group.


2019 ◽  
Vol 22 (3) ◽  
pp. 515-527
Author(s):  
Bret J. Benesh ◽  
Dana C. Ernst ◽  
Nándor Sieben

AbstractWe study an impartial game introduced by Anderson and Harary. The game is played by two players who alternately choose previously-unselected elements of a finite group. The first player who builds a generating set from the jointly-selected elements wins. We determine the nim-numbers of this game for finite groups of the form{T\times H}, whereTis a 2-group andHis a group of odd order. This includes all nilpotent and hence abelian groups.


2013 ◽  
Vol 12 (07) ◽  
pp. 1350037 ◽  
Author(s):  
CRISTINA GARCÍA PILLADO ◽  
SANTOS GONZÁLEZ ◽  
CONSUELO MARTÍNEZ ◽  
VICTOR MARKOV ◽  
ALEXANDER NECHAEV

Let G be a finite group and F a field. We show that all G-codes over F are abelian if the order of G is less than 24, but for F = ℤ5 and G = S4 there exist non-abelian G-codes over F, answering to an open problem posed in [J. J. Bernal, Á. del Río and J. J. Simón, An intrinsical description of group codes, Des. Codes Cryptogr.51(3) (2009) 289–300]. This problem is related to the decomposability of a group as the product of two abelian subgroups. We consider this problem in the case of p-groups, finding the minimal order for which all p-groups of such order are decomposable. Finally, we study if the fact that all G-codes are abelian remains true when the base field is changed.


1993 ◽  
Vol 35 (3) ◽  
pp. 367-379 ◽  
Author(s):  
E. Jespers ◽  
M. M. Parmenter

LetGbe a finite group,(ZG) the group of units of the integral group ring ZGand1(ZG) the subgroup of units of augmentation 1. In this paper, we are primarily concerned with the problem of describing constructively(ZG) for particular groupsG.This has been done for a small number of groups (see [11] for an excellent survey), and most recently Jespers and Leal [3] described(ZG) for several 2-groups. While the situation is clear for all groups of order less than 16, not all groups of order 16 were discussed in their paper. Our main aim is to complete the description of(ZG) for all groups of order 16. Since the structure of the unit group of abelian groups is very well known (see for example [10]), we are only interested in the non-abelian case.


2020 ◽  
pp. 1-7
Author(s):  
Omar Tout

Abstract It is well known that the pair $(\mathcal {S}_n,\mathcal {S}_{n-1})$ is a Gelfand pair where $\mathcal {S}_n$ is the symmetric group on n elements. In this paper, we prove that if G is a finite group then $(G\wr \mathcal {S}_n, G\wr \mathcal {S}_{n-1}),$ where $G\wr \mathcal {S}_n$ is the wreath product of G by $\mathcal {S}_n,$ is a Gelfand pair if and only if G is abelian.


Sign in / Sign up

Export Citation Format

Share Document