scholarly journals Automated segmentation of thick confocal microscopy 3D images for the measurement of white matter volumes in zebrafish brains

2020 ◽  
Vol 4 (1) ◽  
pp. 31-45 ◽  
Author(s):  
Sylvain Lempereur ◽  
Arnim Jenett ◽  
Elodie Machado ◽  
Ignacio Arganda-Carreras ◽  
Matthieu Simion ◽  
...  

AbstractTissue clearing methods have boosted the microscopic observations of thick samples such as whole-mount mouse or zebrafish. Even with the best tissue clearing methods, specimens are not completely transparent and light attenuation increases with depth, reducing signal output and signal-to-noise ratio. In addition, since tissue clearing and microscopic acquisition techniques have become faster, automated image analysis is now an issue. In this context, mounting specimens at large scale often leads to imperfectly aligned or oriented samples, which makes relying on predefined, sample-independent parameters to correct signal attenuation impossible.Here, we propose a sample-dependent method for contrast correction. It relies on segmenting the sample, and estimating sample depth isosurfaces that serve as reference for the correction. We segment the brain white matter of zebrafish larvae. We show that this correction allows a better stitching of opposite sides of each larva, in order to image the entire larva with a high signal-to-noise ratio throughout. We also show that our proposed contrast correction method makes it possible to better recognize the deep structures of the brain by comparing manual vs. automated segmentations. This is expected to improve image observations and analyses in high-content methods where signal loss in the samples is significant.

Nanophotonics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 3443-3450 ◽  
Author(s):  
Wei-Nan Liu ◽  
Rui Chen ◽  
Wei-Yi Shi ◽  
Ke-Bo Zeng ◽  
Fu-Li Zhao ◽  
...  

AbstractSelective transmission or filtering always responds to either frequency or incident angle, so as hardly to maximize signal-to-noise ratio in communication, detection and sensing. Here, we propose compact meta-filters of narrow-frequency sharp-angular transmission peak along with broad omnidirectional reflection sidebands, in all-dielectric cascaded subwavelength meta-gratings. The inherent collective resonance of waveguide-array modes and thin film approximation of meta-grating are employed as the design strategy. A unity transmission peak, locating at the incident angle of 44.4° and the center wavelength of 1550 nm, is demonstrated in a silicon meta-filter consisting of two-layer silicon rectangular meta-grating. These findings provide possibilities in cascaded meta-gratings spectroscopic design and alternative utilities for high signal-to-noise ratio applications in focus-free spatial filtering and anti-noise systems in telecommunications.


2016 ◽  
Vol 7 (2) ◽  
pp. 381 ◽  
Author(s):  
Lukas B. Gromann ◽  
Dirk Bequé ◽  
Kai Scherer ◽  
Konstantin Willer ◽  
Lorenz Birnbacher ◽  
...  

2014 ◽  
Vol 556-562 ◽  
pp. 6328-6331
Author(s):  
Su Zhen Shi ◽  
Yi Chen Zhao ◽  
Li Biao Yang ◽  
Yao Tang ◽  
Juan Li

The LIFT technology has applied in process of denoising to ensure the imaging precision of minor faults and structure in 3D coalfield seismic processing. The paper focused on the denoising process in two study areas where the LIFT technology is used. The separation of signal and noise is done firstly. Then denoising would be done in the noise data. The Data of weak effective signal that is from the noise data could be blended with the original effective signal to reconstruct the denoising data, so the result which has high signal-to-noise ratio and preserved amplitude is acquired. Thus the fact shows that LIFT is an effective denoising method for 3D seismic in coalfield and could be used widely in other work area.


2006 ◽  
Author(s):  
Stanley Wissmar ◽  
Linda Höglund ◽  
Jan Andersson ◽  
Christian Vieider ◽  
Susan Savage ◽  
...  

2016 ◽  
Vol 10 (16) ◽  
pp. 2143-2148 ◽  
Author(s):  
Houman Zarrabi ◽  
Ali Kuhestani ◽  
Majid Moradikia

Sign in / Sign up

Export Citation Format

Share Document