scholarly journals Different Boosting Systems and their Control Strategies for a Spark Ignition Internal Combustion Engine

2016 ◽  
Vol 14 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Ondřej Bolehovský ◽  
Jan Macek

Abstract This research uses 1-D simulation in GT-Power for evaluation of boosting systems for a spark ignition engine. Exhaust gas driven (waste-gated turbocharger) and mechanical driven (Roots blower) boosting systems are assessed in both steady state and transient modes in terms of performance, efficiency, fuel consumption, drivability, energy distribution and other aspects that influence gas exchange phase. Moreover, different boost control strategies, particularly at partial load, are also evaluated. Results of the research are aimed at helping identify an optimal boosting system for standardized or real-world drive cycles.

2019 ◽  
Vol 179 (4) ◽  
pp. 86-92
Author(s):  
Mieczysław DZIUBIŃSKI ◽  
Ewa SIEMIONEK ◽  
Artur DROZD ◽  
Michał ŚCIRKA ◽  
Adam KISZCZAK ◽  
...  

The article discusses the impact of ignition system damage on the emission of toxic subcategories in a spark-ignition internal combustion engine. The aim of the work was to develop an analytical model of ignition system diagnostics, test performance and comparative analysis of the results of simulations and experiments. The model developed allows to analyse the basic parameters of the ignition system affecting the content of toxic substances in the exhaust. Experimental tests were carried out using the MAHA MGT5 exhaust gas analyser for four different combustion engines fueled with petrol at various operating conditions. During the tests, the content of toxic substances in the exhaust gas of a properly working engine and the engine working with damage to the ignition system were registered. The tests will be used to assess the impact of the damage of the spark-ignition engine on the emission of individual components of toxic fumes.


Author(s):  
Amir Khameneian ◽  
Xin Wang ◽  
Paul Dice ◽  
Mahdi Shahbakhti ◽  
Jefferey D. Naber ◽  
...  

Abstract The in-cylinder trapped air, residual gas, and temperature directly impact Spark Ignition (SI) engine operation and control. However, estimation of these variables dynamically is difficult. This study proposes a dynamic cycle-by-cycle model for estimation of the in-cylinder mixture temperature at different events such as Intake Valve Closed (IVC), as well as mass of trapped air and residual gas. In-cylinder, intake and exhaust pressure traces are the primary inputs to the model. The mass of trapped residual gas is affected by valve overlap increase due to the exhaust gas backflow. Of importance to engines with Variable Valve Timing (VVT), the compressible ideal-gas flow correlations were applied to predict the exhaust gas backflow into the cylinder. Furthermore, 1D GT-Power Three Pressure Analysis (TPA) was used to calibrate and validate the designed model under steady-state conditions. To minimize the calibration efforts, Design of Experiments (DOE) analysis methodology was used. The transient behavior of the model was validated using dynamometer dynamic driving cycle. The cycle-based output parameters of the developed model are in good agreement with transient experimental data with minimal delay and overshoot. The predicted parameters follow the input dynamics propagated in the in-cylinder, intake and exhaust pressure traces with a 1.5% average relative steady-state prediction error.


Author(s):  
Shima Nazari ◽  
Anna Stefanopoulou ◽  
Rani Kiwan ◽  
Vasilios Tsourapas

This paper proposes a novel master-slave control strategy for coordination of throttle, wastegate and supercharger actuators in an electrically twincharged engine in order to guarantee efficient boost control during transients, while at steady state a throttle-wastegate coordination provides minimum engine backpressure hence engine efficiency elevation. The benefits and challenges associated with Low Pressure Exhaust Gas Recirculation (LP-EGR) in a baseline turbocharged engine, including improved engine efficiency, mainly due to better combustion phasing, and sluggish engine response to a torque demand due to slowed down air path dynamics were studied and quantified in [1]. Hence in this paper an electrical Eaton TVS roots type supercharger at high pressure side of the turbocharger compressor (TC compressor) is added to the baseline turbocharged engine and the performance of the proposed controller in the presence of LP-EGR, which is a more demanding condition, is evaluated and compared to the turbocharged engine. One dimensional (1D) crankangle resolved engine simulations show that the proposed master-slave control strategy can effectively improve the transient response of the twincharged engine, making it comparable to naturally aspirated engines, while the consumed electrical energy during transients can be recovered from the decreased fuel consumption due to LP-EGR conditions at steady state in approximately 1 second. Finally, a simple controller is developed to bypass the TC compressor and maximize the engine feeding charge during the transients in order to avoid TC compressor choking and achieve faster response.


1970 ◽  
Author(s):  
S. C. Sorenson ◽  
P. S. Myers ◽  
O. A. Uyehara

1974 ◽  
Vol 96 (3) ◽  
pp. 1089-1096
Author(s):  
A. D. Rathsam

The paper describes the design, hardware, testing, and performance of a breadboard semi-closed cycle power system proposed for undersea operations by the Naval Undersea Center. The work was performed to prove the feasibility of the system. The system includes a commercially available spark-ignition engine, which operates on natural gas, oxygen, and recirculated exhaust gas, and a specially designed liquid oxygen/excess exhaust gas converter. The converter utilizes heat from dry, precooled exhaust gas to vaporize liquid oxygen and provide oxygen for the engine. While providing heat for liquid oxygen vaporization, the exhaust gas becomes frozen. The well-insulated converter is designed with ample storage capacity for both liquid oxygen and solidified exhaust. Nonoptimized hardware provided reliable airbreathing and nonairbreathing operation. Tests indicate that the approach is feasible for undersea applications.


2014 ◽  
Vol 659 ◽  
pp. 201-204 ◽  
Author(s):  
Mihai Alin Girbaci ◽  
Iulian Agape ◽  
Lidia Gaiginschi

In recent years, automobile manufactures have been required to meet stringent fuel consumption specification. An important factor with regard to this problem is the operating temperature and its effect on functional parameters. In this paper, the effect of heat transfer on the various parameters such as inlet mixture temperature, compression ratio, exhaust gas, fuel consumption, lubrication oil of a spark ignition engine is studied. A number of studies have been reported which dealt with the thermal analysis of the structure of internal combustion engine. Because of the complexity of the problem, these analyses are approximate. Thus, to improve the accuracy of the results of the thermal analysis, we must work with experimental results prelevated from a 24 valve – 6 cylinder spark ignition engine. Included are comparisons between cooling characteristics of the water solutions with those of 100% ethylene glycol coolant.


2021 ◽  
pp. 146808742110222
Author(s):  
Xiang Li ◽  
Yiqiang Pei ◽  
Zhijun Peng ◽  
Tahmina Ajmal ◽  
Khaqan-Jim Rana ◽  
...  

In order to decrease Carbon Dioxide (CO2) emissions, Oxy-Fuel Combustion (OFC) technology with Carbon Capture and Storage (CCS) is being developed in Internal Combustion Engine (ICE). In this article, a numerical study about the effects of intake charge on OFC was conducted in a dual-injection. Spark Ignition (SI) engine, with Gasoline Direct Injection (GDI), Port Fuel Injection (PFI) and P-G (50% PFI and 50% GDI) three injection strategies. The results show that under OFC with fixed Oxygen Mass Fraction (OMF) and intake temperature, the maximum Brake Mean Effective Pressure (BMEP) is each 5.671, 5.649 and 5.646 bar for GDI, P-G and PFI strategy, which leads to a considerable decrease compared to Conventional Air Combustion (CAC). [Formula: see text], [Formula: see text] and [Formula: see text] of PFI are the lowest among three injection strategies. With intake temperature increases from 298 to 378 K, the reduction of BMEP can be up to 12.68%, 12.92% and 12.75% for GDI, P-G and PFI, respectively. Meantime, there is an increase of about 3% in Brake Specific Fuel Consumption (BSFC) and Brake Specific Oxygen Consumption (BSOC). Increasing OMF can improve the performance of BMEP and BSFC, and the trend is more apparent under GDI strategy. Besides, an increasing tendency can be observed for cylinder pressure and in-cylinder temperature under all injection strategies with the increase of OMF.


Author(s):  
Dinesh D. Adgulkar ◽  
N. V. Deshpande ◽  
S. B. Thombre ◽  
I. K. Chopde

By supporting hydrogen as an alternative fuel to the conventional fuel i.e. gasoline, new era of renewable and carbon neutral energy resources can be introduced. Hence, development of hydrogen fuelled internal combustion engine for improved power density and less emission of NOx has become today’s need and researchers are continuously extending their efforts in the improvement of hydrogen fuelled internal combustion engine. In this work, three dimensional CFD simulations were performed using CFD code (AVL FIRE) for premixed combustion of hydrogen. The simplified 3D geometry of engine with single valve i.e. inlet valve was considered for the simulation. Various combustion models for spark ignition for hydrogen i.e. Eddy Breakup model, Turbulent Flame Speed Closure Combustion Model, Coherent Flame model, Probability Density Function model were tested and validated with available simulation results. Results obtained in simulation indicate that the properties of hydrogen i.e. high flame speed, wide flammability limit, and high ignition temperature are among the main influencing factors for hydrogen combustion being different than that of gasoline. Different parameters i.e. spark advance angle (TDC to 40° before TDC in the step of 5°), rotational speed (1200 to 3000 rpm in the step of 300 rpm), equivalence ratio (0.5 to 1.2 in the step of 0.1), and compression ratio (8, 9 and 10) were used to simulate the combustion of hydrogen in spark ignition engine and to investigate their effects on the engine performance, which is in terms of pressure distribution, temperature distribution, species mass fraction, reaction progress variable and rate of heat release for complete cycle. The results of power output for hydrogen were also compared with that of gasoline. It has been observed that power output for hydrogen is almost 12–15% less than that of gasoline.


Sign in / Sign up

Export Citation Format

Share Document