Spark ignition engine control strategies for minimising cold start fuel consumption under cumulative tailpipe emissions constraints

2013 ◽  
Vol 21 (8) ◽  
pp. 1007-1019 ◽  
Author(s):  
D.I. Andrianov ◽  
C. Manzie ◽  
M.J. Brear
Author(s):  
Makoto Koike ◽  
Tetsunori Suzuoki ◽  
Tadashi Takeuchi ◽  
Takayuki Homma ◽  
Satoshi Hariu ◽  
...  

2019 ◽  
Vol 26 (3) ◽  
pp. 31-38
Author(s):  
Wojciech Gis ◽  
Maciej Gis ◽  
Piotr Wiśniowski ◽  
Mateusz Bednarski

Abstract Limiting emissions of harmful substances is a key task for vehicle manufacturers. Excessive emissions have a negative impact not only on the environment, but also on human life. A significant problem is the emission of nitrogen oxides as well as solid particles, in particular those up to a diameter of 2.5 microns. Carbon dioxide emissions are also a problem. Therefore, work is underway on the use of alternative fuels to power the vehicle engines. The importance of alternative fuels applies to spark ignition engines. The authors of the article have done simulation tests of the Renault K4M 1.6 16v traction engine for emissions for fuels with a volumetric concentration of bioethanol from 10 to 85 percent. The analysis was carried out for mixtures as substitute fuels – without doing any structural changes in the engine's crankshafts. Emission of carbon monoxide, carbon dioxide, hydrocarbons, oxygen at full throttle for selected rotational speeds as well as selected engine performance parameters such as maximum power, torque, hourly and unit fuel consumption were determined. On the basis of the simulation tests performed, the reasonableness of using the tested alternative fuels was determined on the example of the drive unit without affecting its constructions, in terms of e.g. issue. Maximum power, torque, and fuel consumption have also been examined and compared. Thus, the impact of alternative fuels will be determined not only in terms of emissions, but also in terms of impact on the parameters of the power unit.


2019 ◽  
Vol 20 (10) ◽  
pp. 1047-1058 ◽  
Author(s):  
Giovanni Vagnoni ◽  
Markus Eisenbarth ◽  
Jakob Andert ◽  
Giuseppe Sammito ◽  
Joschka Schaub ◽  
...  

The increasing connectivity of future vehicles allows the prediction of the powertrain operational profiles. This technology will improve the transient control of the engine and its exhaust gas aftertreatment systems. This article describes the development of a rule-based algorithm for the air path control, which uses the knowledge of upcoming driving events to reduce especially [Formula: see text] and particulate (soot) emissions. In the first section of this article, the boosting and the lean [Formula: see text] trap systems of a diesel powertrain are investigated as relevant sub-systems for shorter prediction horizons, suitable for Car-to-X communication range. Reference control strategies, based on state-of-the-art engine control unit algorithms and suitable predictive control logics, are compared for the two sub-systems in a model in the loop simulation environment. The simulation driving cycles are based on Worldwide harmonized Light-duty Test Cycle and Real Driving Emissions regulations. Due to the shorter, and consequently more probable, prediction horizon and the demonstrated emission improvements, a dedicated rule-based algorithm for the air path control is developed and benchmarked in the Worldwide harmonized Light-duty Test Cycle as described in the second part of this article. Worldwide harmonized Light-duty Test Cycle test results show an improvement potential for engine-out soot and [Formula: see text] emissions of up to 5.2% and 1.2%, respectively, for the air path case and a reduction of the average fuel consumption in Real Driving Emissions of up to 1% for the lean NOx trap case. In addition, the developed rule-based algorithm allows the adjustment of the desired NOx–soot trade-off, while keeping the fuel consumption constant. The study concludes with brief recommendations for future research directions, as for example, the introduction of a prediction module for the estimation of the vehicle operational profile in the prediction horizon.


2019 ◽  
Vol 22 (1) ◽  
pp. 184-198
Author(s):  
Mikiya Araki ◽  
Katsuya Sakairi ◽  
Takashi Kuribara ◽  
Juan C González Palencia ◽  
Seiichi Shiga ◽  
...  

In a four-stroke cycle port-fuel-injected spark-ignition engine, a significant portion of unburned hydrocarbons is exhausted during the short period of cold start. The aim of this study is to investigate the physics behind the wall-wet phenomena and its determining parameter as simply as possible even though qualitative to some extent. The test engine is driven at a constant speed of 350 r/min. The fuel injection starts at a certain cycle, and the cycles required for the first ignition is counted. Three gasoline injectors having different atomization characteristics are used for port fuel injection, and the droplet size, the spray angle and the spray velocity are varied independently. The fuel transport phenomena from the injector to the cylinder are characterized by only two parameters, α and β, the mass fraction of the fuel without wall-wet and the mass fraction of the evaporated fuel from liquid films on walls. They are determined so that all the first ignition cycles observed experimentally are consistently reproduced by the model. The value of α is successfully determined for every single injector, and it increases monotonously with the decrease in the Stokes number.


2017 ◽  
Vol 118 ◽  
pp. 00036 ◽  
Author(s):  
Andrzej Bieniek ◽  
Mariusz Graba ◽  
Krystian Hennek ◽  
Jarosław Mamala

Sign in / Sign up

Export Citation Format

Share Document