scholarly journals Numerical study on the effects of intake charge on oxy-fuel combustion in a dual-injection spark ignition engine at economical oxygen-fuel ratios

2021 ◽  
pp. 146808742110222
Author(s):  
Xiang Li ◽  
Yiqiang Pei ◽  
Zhijun Peng ◽  
Tahmina Ajmal ◽  
Khaqan-Jim Rana ◽  
...  

In order to decrease Carbon Dioxide (CO2) emissions, Oxy-Fuel Combustion (OFC) technology with Carbon Capture and Storage (CCS) is being developed in Internal Combustion Engine (ICE). In this article, a numerical study about the effects of intake charge on OFC was conducted in a dual-injection. Spark Ignition (SI) engine, with Gasoline Direct Injection (GDI), Port Fuel Injection (PFI) and P-G (50% PFI and 50% GDI) three injection strategies. The results show that under OFC with fixed Oxygen Mass Fraction (OMF) and intake temperature, the maximum Brake Mean Effective Pressure (BMEP) is each 5.671, 5.649 and 5.646 bar for GDI, P-G and PFI strategy, which leads to a considerable decrease compared to Conventional Air Combustion (CAC). [Formula: see text], [Formula: see text] and [Formula: see text] of PFI are the lowest among three injection strategies. With intake temperature increases from 298 to 378 K, the reduction of BMEP can be up to 12.68%, 12.92% and 12.75% for GDI, P-G and PFI, respectively. Meantime, there is an increase of about 3% in Brake Specific Fuel Consumption (BSFC) and Brake Specific Oxygen Consumption (BSOC). Increasing OMF can improve the performance of BMEP and BSFC, and the trend is more apparent under GDI strategy. Besides, an increasing tendency can be observed for cylinder pressure and in-cylinder temperature under all injection strategies with the increase of OMF.

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5287
Author(s):  
Xiang Li ◽  
Yiqiang Pei ◽  
Dayou Li ◽  
Tahmina Ajmal ◽  
Khaqan-Jim Rana ◽  
...  

Currently, global warming has been a serious issue, which is closely related to anthropogenic emission of Greenhouse Gas (GHG) in the atmosphere, particularly Carbon Dioxide (CO2). To help achieve carbon neutrality by decreasing CO2 emissions, Oxy-Fuel Combustion (OFC) technology is becoming a hot topic in recent years. However, few findings have been reported about the implementation of OFC in dual-injection Spark Ignition (SI) engines. This work numerically explores the effects of Water Injection (WI) strategies on OFC characteristics in a practical dual-injection engine, including GDI (only using GDI), P50-G50 (50% PFI and 50% GDI) and PFI (only using PFI). The findings will help build a conceptual and theoretical foundation for the implementation of OFC technology in dual-injection SI engines, as well as exploring a solution to increase engine efficiency. The results show that compared to Conventional Air Combustion (CAC), there is a significant increase in BSFC under OFC. Ignition delay (θF) is significantly prolonged, and the spark timing is obviously advanced. Combustion duration (θC) of PFI is a bit shorter than that of GDI and P50-G50. There is a small benefit to BSFC under a low water-fuel mass ratio (Rwf). However, with the further increase of Rwf from 0.2 to 0.9, there is an increment of 4.29%, 3.6% and 3.77% in BSFC for GDI, P50-G50 and PFI, respectively. As WI timing (tWI) postpones to around −30 °CA under the conditions of Rwf ≥ 0.8, BSFC has a sharp decrease of more than 6 g/kWh, and this decline is more evident under GDI injection strategy. The variation of maximum cylinder pressure (Pmax) and combustion phasing is less affected by WI temperature (TWI) compared to the effects of Rwf or tWI. BSFC just has a small decline with the increase of TWI from 298 K to 368 K regardless of the injection strategy. Consequently, appropriate WI strategies are beneficial to OFC combustion in a dual-injection SI engine, but the benefit in fuel economy is limited.


2021 ◽  
Vol 11 (4) ◽  
pp. 1441
Author(s):  
Farhad Salek ◽  
Meisam Babaie ◽  
Amin Shakeri ◽  
Seyed Vahid Hosseini ◽  
Timothy Bodisco ◽  
...  

This study aims to investigate the effect of the port injection of ammonia on performance, knock and NOx emission across a range of engine speeds in a gasoline/ethanol dual-fuel engine. An experimentally validated numerical model of a naturally aspirated spark-ignition (SI) engine was developed in AVL BOOST for the purpose of this investigation. The vibe two zone combustion model, which is widely used for the mathematical modeling of spark-ignition engines is employed for the numerical analysis of the combustion process. A significant reduction of ~50% in NOx emissions was observed across the engine speed range. However, the port injection of ammonia imposed some negative impacts on engine equivalent BSFC, CO and HC emissions, increasing these parameters by 3%, 30% and 21%, respectively, at the 10% ammonia injection ratio. Additionally, the minimum octane number of primary fuel required to prevent knock was reduced by up to 3.6% by adding ammonia between 5 and 10%. All in all, the injection of ammonia inside a bio-fueled engine could make it robust and produce less NOx, while having some undesirable effects on BSFC, CO and HC emissions.


Author(s):  
Dinesh D. Adgulkar ◽  
N. V. Deshpande ◽  
S. B. Thombre ◽  
I. K. Chopde

By supporting hydrogen as an alternative fuel to the conventional fuel i.e. gasoline, new era of renewable and carbon neutral energy resources can be introduced. Hence, development of hydrogen fuelled internal combustion engine for improved power density and less emission of NOx has become today’s need and researchers are continuously extending their efforts in the improvement of hydrogen fuelled internal combustion engine. In this work, three dimensional CFD simulations were performed using CFD code (AVL FIRE) for premixed combustion of hydrogen. The simplified 3D geometry of engine with single valve i.e. inlet valve was considered for the simulation. Various combustion models for spark ignition for hydrogen i.e. Eddy Breakup model, Turbulent Flame Speed Closure Combustion Model, Coherent Flame model, Probability Density Function model were tested and validated with available simulation results. Results obtained in simulation indicate that the properties of hydrogen i.e. high flame speed, wide flammability limit, and high ignition temperature are among the main influencing factors for hydrogen combustion being different than that of gasoline. Different parameters i.e. spark advance angle (TDC to 40° before TDC in the step of 5°), rotational speed (1200 to 3000 rpm in the step of 300 rpm), equivalence ratio (0.5 to 1.2 in the step of 0.1), and compression ratio (8, 9 and 10) were used to simulate the combustion of hydrogen in spark ignition engine and to investigate their effects on the engine performance, which is in terms of pressure distribution, temperature distribution, species mass fraction, reaction progress variable and rate of heat release for complete cycle. The results of power output for hydrogen were also compared with that of gasoline. It has been observed that power output for hydrogen is almost 12–15% less than that of gasoline.


Author(s):  
A. Manivannan ◽  
R. Ramprabhu ◽  
P. Tamilporai ◽  
S. Chandrasekaran

This paper deals with Numerical Study of 4-stoke, Single cylinder, Spark Ignition, Extended Expansion Lean Burn Engine. Engine processes are simulated using thermodynamic and global modeling techniques. In the simulation study following process are considered compression, combustion, and expansion. Sub-models are used to include effect due to gas exchange process, heat transfer and friction. Wiebe heat release formula was used to predict the cylinder pressure, which was used to find out the indicated work done. The heat transfer from the cylinder, friction and pumping losses also were taken into account to predict the brake mean effective pressure, brake thermal efficiency and brake specific fuel consumption. Extended Expansion Engine operates on Otto-Atkinson cycle. Late Intake Valve Closure (LIVC) technique is used to control the load. The Atkinson cycle has lager expansion ratio than compression ratio. This is achieved by increasing the geometric compression ratio and employing LIVC. Simulation result shows that there is an increase in thermal efficiency up to a certain limit of intake valve closure timing. Optimum performance is attained at 90 deg intake valve closure (IVC) timing further delaying the intake valve closure reduces the engine performance.


2004 ◽  
Vol 126 (3) ◽  
pp. 635-644 ◽  
Author(s):  
Yangbing Zeng ◽  
C. F. Lee

A numerical study has been performed of the air/fuel preparation process in a cold-starting port-injected spark-ignition engine. The latest models were implemented for spray impingement and multicomponent vaporization of the droplet and wall film accounting for finite diffusion in the liquid. The infinite diffusion model was found insufficient for predicting vaporization in this engine, and the single-component fuel representation yields results significantly different from those from the multicomponent one. The operating parameters studied included injection timing, swirl, speed, target path, enrichment, and fuel accumulation. In-cylinder measurements were compared and good agreement was achieved. Detailed quantitative analysis of the air/fuel preparation of the engine was reported.


Fuel ◽  
2020 ◽  
Vol 260 ◽  
pp. 116403 ◽  
Author(s):  
Changming Gong ◽  
Zhaohui Li ◽  
lin Yi ◽  
Kuo Huang ◽  
Fenghua Liu

Energy ◽  
2019 ◽  
Vol 172 ◽  
pp. 968-976 ◽  
Author(s):  
Cinzia Tornatore ◽  
Fabio Bozza ◽  
Vincenzo De Bellis ◽  
Luigi Teodosio ◽  
Gerardo Valentino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document