scholarly journals Direct Strut-and-Tie Model for Reinforced Concrete Bridge Pier Cap

2016 ◽  
Vol 12 (2) ◽  
pp. 1-8 ◽  
Author(s):  
Vinayak Hemant Kumar ◽  
N.A.K Sivaa Senthil ◽  
T V Pradeep Kumar

Abstract A simple and direct Strut-and-Tie Model (STM) is proposed here to predict the ultimate shear strength of the reinforced concrete bridge pier cap for shear span to depth ratio of 0.4 to 2.4. The model is based on the Kupfer-Gerstle Biaxial Compression-Tension failure criterion which includes the concrete softening effect produced by the presence of transverse tensile stress. The earlier models consider the stress distribution factor for the varied stress distribution across the section by assuming it as linear function which is derived by satisfying equilibrium conditions. In this study the principal stresses have been evaluated by satisfying the compatibility condition at the time of impending failure which has been accounted for the effective area of concrete resisting tension. Also the softening effect has been included by using the formula for tensile strength of cracked concrete proposed by Belarbi and Hsu. The proposed model has been validated with 43 experimental results by author and from literature which confirm the coherency and conservativeness of the predicted results. The parametric study on ultimate shear strength is done so as to infer the relation between various abstract quantities such as compressive strain, shear capacity, span depth ratio and other material properties and get a deeper insight into the behavior of the Pier cap. Thus this paper tries to extend the practical application of Strut-and-Tie Model for reinforced concrete bridge pier cap in understanding the actual behavior of the structure on various dimensional and material parameters.

2011 ◽  
Vol 243-249 ◽  
pp. 514-520
Author(s):  
Chun Yang ◽  
Ming Ji He ◽  
Jian Cai ◽  
Yan Sheng Huang ◽  
Yi Wu

Based on strut-and-tie model (STM) in deep beams, steel truss reinforced concrete (STRC) deep beam was developed. Experimental investigations of mechanical performances of STRC deep beams were carried out, and results show that STRC deep beam is of high ultimate bearing capacity, large rigidity and good ductility; Strut-and-tie force transference model is formed in STRC deep beams, and loads can be transferred in the shortest and direct way. Then Steel reinforced concrete (SRC) strut-and-tie model (SSTM) for determining the shear strength of STRC deep beams is proposed. The contribution of SRC diagonal strut, longitudinal reinforcements, stirrups and web reinforcements to the shear strength of STRC deep beams are determined with consideration of softened effects of concrete, and for safe consideration, superposition theory is employed for SRC struts. Computer programs are developed to calculate the shear strength of STRC deep beams and verified by experimental results.


2014 ◽  
Vol 931-932 ◽  
pp. 468-472
Author(s):  
Piyoros Tasenhod ◽  
Jaruek Teerawong

Shear strength prediction of simple deep reinforced concrete beams by method of strut-and-tie model is presented in this paper. The tested specimens were designed according to Appendix A of ACI 318-11 code with variations of shear span-to-effective depth ratios and ratios of horizontal and vertical crack-controlling reinforcement. Test results revealed that at the same shear span-to-effective depth ratio, the various crack-controlling reinforcements significantly influenced on strength reduction coefficients of strut and failure modes. When the shear span-to-effective depth ratios were increased, failure modes changed from splitting diagonal strut to flexural-shear failure. Based on the test results, the proposed model was compared with Appendix A of ACI 318-11code.


Sign in / Sign up

Export Citation Format

Share Document