On oscilatory fourth order nonlinear neutral differential equations – IV
Keyword(s):
Abstract In this paper, oscillation of all solutions of fourth order functional differential equations of neutral type of the form $$\begin{array}{} \displaystyle (r(t)(y(t)+p(t)y(t-\tau))'')''+q(t)G(y(t-\sigma))=0 \end{array}$$ are studied under the assumption $$\begin{array}{} \displaystyle \int\limits^{\infty}_{0}\frac{t}{r(t)}\text{d}t \lt \infty \end{array}$$ for various ranges of p(t)
1990 ◽
Vol 148
(1)
◽
pp. 263-273
◽
2008 ◽
Vol 254
(8)
◽
pp. 2069-2091
◽
1995 ◽
Vol 189
(1)
◽
pp. 59-84
◽