Upper bounds for analytic summand functions and related inequalities

2021 ◽  
Vol 71 (5) ◽  
pp. 1103-1112
Author(s):  
Soodeh Mehboodi ◽  
M. H. Hooshmand

Abstract The topic of analytic summability of functions was introduced and studied in 2016 by Hooshmand. He presented some inequalities and upper bounds for analytic summand functions by applying Bernoulli polynomials and numbers. In this work we apply upper bounds, represented by Hua-feng, for Bernoulli numbers to improve the inequalities and related results. Then, we observe that the inequalities are sharp and leave a conjecture about them. Also, as some applications, we use them for some special functions and obtain many particular inequalities. Moreover, we arrived at the inequality 1 p + 2 p + 3 p + ⋯ + r p ≤ 1 2 r p + 1 3 r p + 1 ( p + 1 ) + 2 3 p ! π p + 1 sinh ⁡ ( π r ) $1^p + 2^p + 3^p + \dots + r^p \leq \frac{1}{2}r^p + \frac{1}{3}\frac{r^{p+1}}{(p+1)} + \frac{2}{3}\frac{p!}{\pi^{p+1}}\sinh(\pi r)$ , for r sums of power of natural numbers, if p ∈ ℕ e and analogously for the odd case.

Filomat ◽  
2019 ◽  
Vol 33 (10) ◽  
pp. 3223-3230
Author(s):  
Sh. Saadat ◽  
M.H. Hooshmand

Analytic summability of functions was introduced by the second author in 2016. He utilized Bernoulli numbers and polynomials for a holomorphic function to construct analytic summability. The analytic summand function f? (if exists) satisfies the difference functional equation f?(z) = f (z) + f?(z-1). Moreover, some upper bounds for f? and several inequalities between f and f? were presented by him. In this paper, by using Alzer?s improved upper bound for Bernoulli numbers, we improve those upper bounds and obtain some inequalities and new upper bounds. As some applications of the topic, we obtain several upper bounds for Bernoulli polynomials, sums of powers of natural numbers, (e.g., 1p+2p+3p+...+rp ? 2p! ?p+1 (e?r-1)) and several inequalities for exponential, hyperbolic and trigonometric functions.


2018 ◽  
Vol 14 (02) ◽  
pp. 595-613 ◽  
Author(s):  
Levent Kargın

We relate geometric polynomials and [Formula: see text]-Bernoulli polynomials with an integral representation, then obtain several properties of [Formula: see text]-Bernoulli polynomials. These results yield new identities for Bernoulli numbers. Moreover, we evaluate a Faulhaber-type summation in terms of [Formula: see text]-Bernoulli polynomials. Finally, we introduce poly-[Formula: see text]-Bernoulli polynomials and numbers, then study some arithmetical and number theoretical properties of them.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 914 ◽  
Author(s):  
Dae San Kim ◽  
Dmitry V. Dolgy ◽  
Jongkyum Kwon ◽  
Taekyun Kim

The purpose of this paper is to introduce and study type 2 degenerate q-Bernoulli polynomials and numbers by virtue of the bosonic p-adic q-integrals. The obtained results are, among other things, several expressions for those polynomials, identities involving those numbers, identities regarding Carlitz’s q-Bernoulli numbers, identities concerning degenerate q-Bernoulli numbers, and the representations of the fully degenerate type 2 Bernoulli numbers in terms of moments of certain random variables, created from random variables with Laplace distributions. It is expected that, as was done in the case of type 2 degenerate Bernoulli polynomials and numbers, we will be able to find some identities of symmetry for those polynomials and numbers.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Waseem A. Khan ◽  
Ghulam Muhiuddin ◽  
Abdulghani Muhyi ◽  
Deena Al-Kadi

AbstractRecently, Kim et al. (Adv. Differ. Equ. 2020:168, 2020) considered the poly-Bernoulli numbers and polynomials resulting from the moderated version of degenerate polyexponential functions. In this paper, we investigate the degenerate type 2 poly-Bernoulli numbers and polynomials which are derived from the moderated version of degenerate polyexponential functions. Our degenerate type 2 degenerate poly-Bernoulli numbers and polynomials are different from those of Kim et al. (Adv. Differ. Equ. 2020:168, 2020) and Kim and Kim (Russ. J. Math. Phys. 26(1):40–49, 2019). Utilizing the properties of moderated degenerate poly-exponential function, we explore some properties of our type 2 degenerate poly-Bernoulli numbers and polynomials. From our investigation, we derive some explicit expressions for type 2 degenerate poly-Bernoulli numbers and polynomials. In addition, we also scrutinize type 2 degenerate unipoly-Bernoulli polynomials related to an arithmetic function and investigate some identities for those polynomials. In particular, we consider certain new explicit expressions and relations of type 2 degenerate unipoly-Bernoulli polynomials and numbers related to special numbers and polynomials. Further, some related beautiful zeros and graphical representations are displayed with the help of Mathematica.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Taekyun Kim ◽  
Seog-Hoon Rim ◽  
Byungje Lee

By the properties ofp-adic invariant integral onℤp, we establish various identities concerning the generalized Bernoulli numbers and polynomials. From the symmetric properties ofp-adic invariant integral onℤp, we give some interesting relationship between the power sums and the generalized Bernoulli polynomials.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 675 ◽  
Author(s):  
Serkan Araci ◽  
Waseem Khan ◽  
Kottakkaran Nisar

We aim to introduce arbitrary complex order Hermite-Bernoulli polynomials and Hermite-Bernoulli numbers attached to a Dirichlet character χ and investigate certain symmetric identities involving the polynomials, by mainly using the theory of p-adic integral on Z p . The results presented here, being very general, are shown to reduce to yield symmetric identities for many relatively simple polynomials and numbers and some corresponding known symmetric identities.


2017 ◽  
Vol 9 (5) ◽  
pp. 73
Author(s):  
Do Tan Si

We show that a sum of powers on an arithmetic progression is the transform of a monomial by a differential operator and that its generating function is simply related to that of the Bernoulli polynomials from which consequently it may be calculated. Besides, we show that it is obtainable also from the sums of powers of integers, i.e. from the Bernoulli numbers which in turn may be calculated by a simple algorithm.By the way, for didactic purpose, operator calculus is utilized for proving in a concise manner the main properties of the Bernoulli polynomials. 


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Kohei Iwaki ◽  
Tatsuya Koike ◽  
Yumiko Takei

Abstract We show that each member of the confluent family of the Gauss hypergeometric equations is realized as quantum curves for appropriate spectral curves. As an application, relations between the Voros coefficients of those equations and the free energy of their classical limit computed by the topological recursion are established. We will also find explicit expressions of the free energy and the Voros coefficients in terms of the Bernoulli numbers and Bernoulli polynomials. Communicated by: Youjin Zhang


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 847 ◽  
Author(s):  
Dmitry V. Dolgy ◽  
Dae San Kim ◽  
Jongkyum Kwon ◽  
Taekyun Kim

In this paper, we investigate some identities on Bernoulli numbers and polynomials and those on degenerate Bernoulli numbers and polynomials arising from certain p-adic invariant integrals on Z p . In particular, we derive various expressions for the polynomials associated with integer power sums, called integer power sum polynomials and also for their degenerate versions. Further, we compute the expectations of an infinite family of random variables which involve the degenerate Stirling polynomials of the second and some value of higher-order Bernoulli polynomials.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 451 ◽  
Author(s):  
Dae Kim ◽  
Taekyun Kim ◽  
Cheon Ryoo ◽  
Yonghong Yao

The q-Bernoulli numbers and polynomials can be given by Witt’s type formulas as p-adic invariant integrals on Z p . We investigate some properties for them. In addition, we consider two variable q-Bernstein polynomials and operators and derive several properties for these polynomials and operators. Next, we study the evaluation problem for the double integrals on Z p of two variable q-Bernstein polynomials and show that they can be expressed in terms of the q-Bernoulli numbers and some special values of q-Bernoulli polynomials. This is generalized to the problem of evaluating any finite product of two variable q-Bernstein polynomials. Furthermore, some identities for q-Bernoulli numbers are found.


Sign in / Sign up

Export Citation Format

Share Document