scholarly journals Analytical properties of type 2 degenerate poly-Bernoulli polynomials associated with their applications

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Waseem A. Khan ◽  
Ghulam Muhiuddin ◽  
Abdulghani Muhyi ◽  
Deena Al-Kadi

AbstractRecently, Kim et al. (Adv. Differ. Equ. 2020:168, 2020) considered the poly-Bernoulli numbers and polynomials resulting from the moderated version of degenerate polyexponential functions. In this paper, we investigate the degenerate type 2 poly-Bernoulli numbers and polynomials which are derived from the moderated version of degenerate polyexponential functions. Our degenerate type 2 degenerate poly-Bernoulli numbers and polynomials are different from those of Kim et al. (Adv. Differ. Equ. 2020:168, 2020) and Kim and Kim (Russ. J. Math. Phys. 26(1):40–49, 2019). Utilizing the properties of moderated degenerate poly-exponential function, we explore some properties of our type 2 degenerate poly-Bernoulli numbers and polynomials. From our investigation, we derive some explicit expressions for type 2 degenerate poly-Bernoulli numbers and polynomials. In addition, we also scrutinize type 2 degenerate unipoly-Bernoulli polynomials related to an arithmetic function and investigate some identities for those polynomials. In particular, we consider certain new explicit expressions and relations of type 2 degenerate unipoly-Bernoulli polynomials and numbers related to special numbers and polynomials. Further, some related beautiful zeros and graphical representations are displayed with the help of Mathematica.

Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 914 ◽  
Author(s):  
Dae San Kim ◽  
Dmitry V. Dolgy ◽  
Jongkyum Kwon ◽  
Taekyun Kim

The purpose of this paper is to introduce and study type 2 degenerate q-Bernoulli polynomials and numbers by virtue of the bosonic p-adic q-integrals. The obtained results are, among other things, several expressions for those polynomials, identities involving those numbers, identities regarding Carlitz’s q-Bernoulli numbers, identities concerning degenerate q-Bernoulli numbers, and the representations of the fully degenerate type 2 Bernoulli numbers in terms of moments of certain random variables, created from random variables with Laplace distributions. It is expected that, as was done in the case of type 2 degenerate Bernoulli polynomials and numbers, we will be able to find some identities of symmetry for those polynomials and numbers.


Author(s):  
Waseem Khan

In this paper, we construct the degenerate poly-Fubini polynomials, called the type 2 degenerate poly-Fubini polynomials, by using the modified degenerate polyexponential function and derive several properties on the degenerate poly-Fubini polynomials and numbers. In the last section, we introduce type 2 degenerate unipoly- Fubini polynomials attached to an arithmetic function, by using the modified degenerate polyexponential function and investigate some identities for those polynomials. Furthermore, we give some new explicit expressions and identities of degenerate unipoly polynomials related to special numbers and polynomials.


2021 ◽  
Vol 19 (1) ◽  
pp. 869-877
Author(s):  
Minyoung Ma ◽  
Dongkyu Lim

Abstract In this paper, the authors study the poly-Bernoulli numbers of the second kind, which are defined by using polyexponential functions introduced by Kims. Also by using unipoly function, we study the unipoly Bernoulli numbers of the second kind, which are attached to an arithmetic function. We derive their explicit expressions and some identities involving poly-Bernoulli numbers of the second kind and unipoly Bernoulli numbers of the second kind.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Lee-Chae Jang ◽  
Hyunseok Lee ◽  
Hanyoung Kim

AbstractA new family of p-Bernoulli numbers and polynomials was introduced by Rahmani (J. Number Theory 157:350–366, 2015) with the help of the Gauss hypergeometric function. Motivated by that paper and in the light of the recent interests in finding degenerate versions, we construct the generalized degenerate Bernoulli numbers and polynomials by means of the Gauss hypergeometric function. In addition, we construct the degenerate type Eulerian numbers as a degenerate version of Eulerian numbers. For the generalized degenerate Bernoulli numbers, we express them in terms of the degenerate Stirling numbers of the second kind, of the degenerate type Eulerian numbers, of the degenerate p-Stirling numbers of the second kind and of an integral on the unit interval. As to the generalized degenerate Bernoulli polynomials, we represent them in terms of the degenerate Stirling polynomials of the second kind.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1011 ◽  
Author(s):  
Dae Sik Lee ◽  
Hye Kyung Kim ◽  
Lee-Chae Jang

In recent years, many mathematicians have studied the degenerate versions of many special polynomials and numbers. The polyexponential functions were introduced by Hardy and rediscovered by Kim, as inverses to the polylogarithms functions. The paper is divided two parts. First, we introduce a new type of the type 2 poly-Euler polynomials and numbers constructed from the modified polyexponential function, the so-called type 2 poly-Euler polynomials and numbers. We show various expressions and identities for these polynomials and numbers. Some of them involving the (poly) Euler polynomials and another special numbers and polynomials such as (poly) Bernoulli polynomials, the Stirling numbers of the first kind, the Stirling numbers of the second kind, etc. In final section, we introduce a new type of the type 2 degenerate poly-Euler polynomials and the numbers defined in the previous section. We give explicit expressions and identities involving those polynomials in a similar direction to the previous section.


2021 ◽  
Vol 6 (11) ◽  
pp. 12680-12697
Author(s):  
Waseem A. Khan ◽  
◽  
Abdulghani Muhyi ◽  
Rifaqat Ali ◽  
Khaled Ahmad Hassan Alzobydi ◽  
...  

<abstract><p>The main object of this article is to present type 2 degenerate poly-Bernoulli polynomials of the second kind and numbers by arising from modified degenerate polyexponential function and investigate some properties of them. Thereafter, we treat the type 2 degenerate unipoly-Bernoulli polynomials of the second kind via modified degenerate polyexponential function and derive several properties of these polynomials. Furthermore, some new identities and explicit expressions for degenerate unipoly polynomials related to special numbers and polynomials are obtained. In addition, certain related beautiful zeros and graphical representations are displayed with the help of <italic>Mathematica</italic>.</p></abstract>


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Taekyun Kim ◽  
Seog-Hoon Rim ◽  
Byungje Lee

By the properties ofp-adic invariant integral onℤp, we establish various identities concerning the generalized Bernoulli numbers and polynomials. From the symmetric properties ofp-adic invariant integral onℤp, we give some interesting relationship between the power sums and the generalized Bernoulli polynomials.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Kohei Iwaki ◽  
Tatsuya Koike ◽  
Yumiko Takei

Abstract We show that each member of the confluent family of the Gauss hypergeometric equations is realized as quantum curves for appropriate spectral curves. As an application, relations between the Voros coefficients of those equations and the free energy of their classical limit computed by the topological recursion are established. We will also find explicit expressions of the free energy and the Voros coefficients in terms of the Bernoulli numbers and Bernoulli polynomials. Communicated by: Youjin Zhang


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 847 ◽  
Author(s):  
Dmitry V. Dolgy ◽  
Dae San Kim ◽  
Jongkyum Kwon ◽  
Taekyun Kim

In this paper, we investigate some identities on Bernoulli numbers and polynomials and those on degenerate Bernoulli numbers and polynomials arising from certain p-adic invariant integrals on Z p . In particular, we derive various expressions for the polynomials associated with integer power sums, called integer power sum polynomials and also for their degenerate versions. Further, we compute the expectations of an infinite family of random variables which involve the degenerate Stirling polynomials of the second and some value of higher-order Bernoulli polynomials.


Sign in / Sign up

Export Citation Format

Share Document