scholarly journals Flexible diamond-like carbon film prepared by hydrothermal electrochemical method

2017 ◽  
Vol 35 (3) ◽  
pp. 447-453
Author(s):  
Ying Tao ◽  
Danqin Yi ◽  
Baojun Zhu ◽  
Wenpeng Cao

AbstractDiamond-like carbon (DLC) thin films were prepared by hydrothermal electrochemical method in one-step process. The structural characterization of these films was carried out by scanning electron microscopy (SEM), Raman spectroscopy, and infrared reflectance spectroscopy (IR). It was found that there was an increased sp2 carbon content but decreased sp3 carbon and hydrogen contents with an increase in current density. The flexibility and internal stresses of the DLC films were affected by hydrogen, sp3 amorphous carbon and ordered crystalline sp2 carbon contents. The highly flexible DLC films with high sp3 carbon and hydrogen contents were prepared at a current density of 0.001 mA/cm2.

Nanoscale ◽  
2014 ◽  
Vol 6 (9) ◽  
pp. 4864-4873 ◽  
Author(s):  
Partha Khanra ◽  
Chang-No Lee ◽  
Tapas Kuila ◽  
Nam Hoon Kim ◽  
Min Jun Park ◽  
...  

Water-dispersible functionalized graphene via one-step electrochemical exfoliation of graphite was prepared using 7,7,8,8-tetracyanoquinodimethane (TCNQ) anions as surface modifiers and electrolytes. The specific capacitance value of TCNQ-modified graphene measured with electrolytes (1 M KOH) was 324 F g−1 at a current density of 1 A g−1.


2007 ◽  
Vol 516 (2-4) ◽  
pp. 293-298 ◽  
Author(s):  
Da-Yung Wang ◽  
Feng-Kuan Chen ◽  
Nan-Hua Wang ◽  
Hsin Her Yu

2019 ◽  
Vol 3 (10) ◽  
pp. 2771-2778 ◽  
Author(s):  
Shancheng Yan ◽  
Ka Wang ◽  
Qingxia Wu ◽  
Fei Zhou ◽  
Zixia Lin ◽  
...  

The ultrafine Co:ZnS/CoS2 heterostructure nanowires with high hydrogen evolution performance by one-step hydrothermal method. The overpotential required to reach a current density of 10 mAcm−2 was only 78 mV in 0.5 M H2SO4 solution, and the Tafel slope was 56 mV dec−1.


1997 ◽  
Vol 504 ◽  
Author(s):  
K. Kuramoto ◽  
Y. Domoto ◽  
H. Hirano ◽  
H. Tarui ◽  
S. Kiyama

ABSTRACTLow temperature (about 50°C) fabrication of diamond like carbon (DLC) films with a high hardness (>3000Hv) and a high electrical resistivity (>1011 Ωm) has been achieved.In order to obtain such a result, the effect of ion impingement on the growth and structural change of DLC films in an electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition (CVD) method was investigated. It was confirmed that ion impingement was fundamentally required in the growth of DLC films. Furthermore, impingement with ions energized by bias voltages between 50V and 150V had a major influence on the sp 2/sp 3 configuration in DLC films. This configuration is found to be rather sensitive to optoelectronic properties but not so sensitive to film hardness.Additionally, this method could fabricate ultrathin DLC films that exhibited excellent wear resistance for protective applications.


2000 ◽  
Vol 18 (2) ◽  
pp. 245-254 ◽  
Author(s):  
E.G. GAMALY ◽  
A.V. RODE ◽  
B. LUTHER-DAVIES

The ultra-fast ablation of a graphite target using high repetition rate Nd:YAG lasers allows us to deposit two distinctly different carbonaceous structures, depending on the ambient Ar pressure: a diamond-like carbon film with the surface finish down to atomic level at a pressure below 0.1 Torr, and a fractal C nanofoam with air-like density and diamond-like resistivity at higher pressure. The experimental characterization of vapors and carbonaceous materials produced is presented and compared to the theoretical predictions. The analysis of the formation conditions leads to the qualitative understanding of the formation mechanism for both C structures.


2018 ◽  
Vol 5 (8) ◽  
pp. 1795-1799 ◽  
Author(s):  
Jiahao Yu ◽  
Fulin Yang ◽  
Gongzhen Cheng ◽  
Wei Luo

A facile and cost-effective one-step hydrothermal method is used to synthesize NiFe LDH microclusters with a 3D hierarchically mesoporous architecture. This superior electrocatalyst can achieve a current density of 10 mA cm−2 with an ultralow overpotential of 211 mV toward the oxygen evolution reaction.


Sign in / Sign up

Export Citation Format

Share Document