Long term heating effects at 1173 K and 1273 K on microstructural rejuvenation in various modified alloys based on GTD-111

2021 ◽  
Vol 63 (8) ◽  
pp. 691-698
Author(s):  
Vara Vacharatanon ◽  
Napat Kiatwisarnkij ◽  
Gobboon Lothongkum ◽  
Nuthaporn Nuttayasakul ◽  
Jiaqian Qin ◽  
...  

Abstract This research work studied and evaluated the effects of reheat treatment conditions, which consisted of solution treatment at a temperature of 1448 K for 14.4 ks, followed by air cooling and precipitate aging at a temperature of 1118 K for 86.4 ks, on the microstructural rejuvenation or refurbishment of various modified alloys based on the cast nickel base superalloy, GTD-111 with aluminum, nickel and/or cobalt additions after long term heating at temperatures of 1173 K and 1273 K for 1440 ks. From the results obtained, it was found that the reheat treatment conditions applied are more suitable for microstructures after long term heating at a temperature of 1173 K. However, such reheat treatment conditions could not fully return reheat treated microstructures to microstructures similar to those of previous research work. It seems that the selected solutioning temperatures and/or times were not sufficient to completely dissolve all coarse gamma prime particles after long term heating for all samples with alloying additions. Typical size and area fractions of the gamma prime particles of the reheat treated microstructures are very similar to those of the original alloyed ones but with lower values, especially those related to the size of the gamma prime particles.

2017 ◽  
Vol 891 ◽  
pp. 433-437 ◽  
Author(s):  
Nattapol Kontikame ◽  
Sureerat Polsilapa ◽  
Panyawat Wangyao

This research work has an aim to investigate the effect of precipitation aging temperatures of 845°C, 865°C, 885°C and 905°C for 24 hours after solutioning treatment at temperature of 1145°C for 4 hours on final microstructure of cast nickel base superalloy, grade Inconel 738, which is used as a material for turbine blades in land base gas turbine engines to generate electricity in power plants. Further interesting is also extended to study and evaluate the phase stability of precipitated gamma prime particles after long-term heating at tempeatures of 900°C and 1000°C for 200 hours of all received final microstructures after various reheat treatment conditions. From all obtained results, it was found that the higher precipitation aging temperatures provided the more coarsening size of both coarse and fine gamma prime particles. Furthermore, after long-term exposure at high temperatures, this resulted in an increasing of both area density and size of gamma prime particles.


2017 ◽  
Vol 891 ◽  
pp. 420-425
Author(s):  
Sureerat Polsilapa ◽  
Aimamorn Promboopha ◽  
Panyawat Wangyao

Cast nickel based superalloy, Grade Inconel 738, is a material for turbine blades. Its rejuvenation heat treatment usually consist of solution treatment condition with temperature range of 1125-1205 oC for 2-6 hours. Then it is following with double aging process including primary aging at 1055oC for 1 hour and secondary aging at 845oC for 24 hours. However, the various selected temperature dropping program were performed during solution treatment to simulate the possible error of heating furnace. The maximum number of temperature dropping during solution treatment is varied from 1-3 times From all obtained results, the various temperature dropping during solution treatment conditions showed extremely the significant effect on the final rejuvenated microstructures and long-term gamma prime stability after heating at temperature of 900oC for 200 hours.


2014 ◽  
Vol 33 (5) ◽  
pp. 453-461 ◽  
Author(s):  
Piyanut Wongbunyakul ◽  
Patama Visuttipitukkul ◽  
Panyawat Wangyao ◽  
Gobboon Lothongkum ◽  
Prasonk Sricharoenchai

AbstractThis work investigates the effect of rejuvenation heat treatment conditions for refurbishment of the long-term serviced gas turbine blades, which were made of as-cast nickel base superalloy grade, Inconel 738. The reheat treatment conditions consist of solutionizing treatments at temperatures of 1,438, 1,458 and 1,478 K for 14.4 ks and aging treatments at temperatures of 1,133, 1,148 and 1,163 K for 43.2, 86.4, 129.6 and 172.8 ks. The results show that increase in aging times results in continuous increase of size and area fraction of gamma prime (γ′) particles. The higher solutionizing temperature leads to the lower area fraction and smaller size of gamma prime particles. Regarding the microstructure characteristics, the most proper reheat treatment condition should be solutionizing at temperature of 1,438 K for 14.4 ks and aging at temperature of 1,133 K for 172.8 ks, which provides the highest area fraction of gamma prime particles in proper size.


2015 ◽  
Vol 1127 ◽  
pp. 79-84
Author(s):  
Panyawat Wangyao ◽  
Luksawee Phansri ◽  
Piyalak Hirisatja ◽  
Kritsayanee Saelor ◽  
Jozef Zrník ◽  
...  

This research study has an aim to evaluate and investigate the effect of various rejuvenation heat treatments on microstructure of long-term serviced cast nickel base superalloy grade GTD-111 used as turbine blade material. The evaluated reheat treatment programs consist of solution treatment at 1195°C for 2, 3, 4 and 5 hours then following with primary aging at 1120◦C for 2 hours and secondary aging at 845°C for 25, 50, 75 and 100 hours, respectively. All reheat treated microstructures were examined and analyzed by SEM and image analyzer. From all obtained results, it was found that the most proper solution treatment duration was 5 hours to provide the most uniform microstructural characteristics, which consist of the uniform distribution of very dense gamma prime particles in the matrix as well as its highest hardness value. Furthermore, when increasing the duration at secondary aging at 845◦C over than 25 hours (which is according to standard heat treatment), such microstructure provided the most gamma prime phase stability comparing to those of other reheat treatment programs.


2021 ◽  
Vol 63 (2) ◽  
pp. 105-112
Author(s):  
Chuleeporn Paa-rai ◽  
Gobboon Lothongkum ◽  
Panyawat Wangyao

Abstract IN-738 turbine blade samples, deteriorated after long term service at high temperatures, were solution heat-treated at two temperatures, 1398 K and 1473 K, for 7.2 ks. Subsequently, the samples were cooled down in different atmospheres, in air and in furnace, for the purpose of studying the effects of different cooling media (rates) on the restored microstructures. Following this, the samples were aged at 1118 K for 43.2 ks and 86.4 ks in order to determine the characteristic of re-precipitated gamma prime particles. A scanning electron microscope (SEM) and ImageJ analysis software were used. The results show that the cooling in air provided gamma prime particles re-precipitating in spherical shape while the cooling in a furnace resulted in coarse gamma prime particles re-precipitating in irregular shape. The samples solutionized at 1398 K for 7.2 ks cooled down in air and then aging at 1118 K provided bimodal microstructure, while the sample solutionized at 1473 K for 7.2 ks, followed by air cooling and aging at 1118 K generated unimodal γ’ precipitation in spherical shape. Cooling in a furnace provides coarse γ’ recipitated particles in more irregular shape for the both solutionizing temperatures studied here. Cooling in a furnace provides coarse γ’ precipitated particles in more irregular shape for the both solutionizing temperatures studied here.


2017 ◽  
Vol 891 ◽  
pp. 426-432 ◽  
Author(s):  
Chuleeporn Paa-Rai ◽  
J. Norachan ◽  
Panyawat Wangyao ◽  
Sureerat Polsilapa ◽  
Gobboon Lothongkum

In this research study, the effect of long-term aging after various solutioning temperatures on final microstructure was investigated. The cast nickel base superalloy, GTD-111, usually has standard reheat treatment as follows: solutioning treatment at 1448 - 1478 K for 7.2 ‑ 21.6 ks and aging at 1118 K for 86.4 ks. However, from previous research works, the density of γ՛ phase was not reached the optimum value. Therefore, extension of aging time was performed in the study from 90 to 180, 270, 360, 720, 1080 and 1440 ks in order to increase density or volume fraction of precipitating γ՛ particles. From the results, it was found that longer aging time provided higher values of both area fraction and size of γ՛ particles. However, increase in aging time resulted in the hardness decrease.


2004 ◽  
Vol 449-452 ◽  
pp. 549-552 ◽  
Author(s):  
Xiao Feng Sun ◽  
Feng Shi Yin ◽  
Heng Rong Guan ◽  
Zhuang Qi Hu

The tensile deformation behavior of M963 superalloy treated by various heat treatments has been studied at both room and high temperature (1173K). The result shows that the alloy treated by the standard solution treatment at 1483K for 4h followed by air-cooling has low ductility especially at 1173K. The additional aging treatment at 1123K for 16h followed by furnace cooling can recover the ductility of the alloy at 1173K, but further decrease its room temperature ductility. The TEM observation shows that the deformation mechanism varied with both the testing temperature and heat treatment. Finally, the mechanism of the aging treatment on the deformation behavior of the M963 superalloy is discussed.


2004 ◽  
Vol 449-452 ◽  
pp. 557-560
Author(s):  
Xiao Feng Sun ◽  
Feng Shi Yin ◽  
Heng Rong Guan ◽  
Zhuang Qi Hu

The tensile deformation behavior of M963 superalloy treated by various heat treatments has been studied at both room and high temperature (1173K). The result shows that the alloy treated by the standard solution treatment at 1483K for 4h followed by air-cooling has low ductility especially at 1173K. The additional aging treatment at 1123K for 16h followed by furnace cooling can recover the ductility of the alloy at 1173K, but further decrease its room temperature ductility. The TEM observation shows that the deformation mechanism varied with both the testing temperature and heat treatment. Finally, the mechanism of the aging treatment on the deformation behavior of the M963 superalloy is discussed.


2015 ◽  
Vol 658 ◽  
pp. 19-24
Author(s):  
Panyawat Wangyao ◽  
Sureerat Polsilapa ◽  
Surang Singmaneesakulchai ◽  
Aimamorn Promboopha

The objectives of this research are to search for the most appropriate heat treatment condition for rejuvenating microstructure of cast nickel base superalloy, grade IN-738, turbine blades after using to prolong its life time service again. The turbine blades that had been used for long term service under load and high temperatures resulted in small gamma prime particles connecting to each other and thus forming into larger particles. This effect generally reduces creep resistance and increases the failure. In this research, 5 IN-738 superalloy samples were reheat-treated under simulation of 2 working conditions. First, they were heated at 900oC. At every 400 hours from the beginning of heat treatment until time reaching 1600 hours, these samples were collected and examined the microstructures, size and area fraction of gamma prime particles. Another heating program, they received an over thermal exposure heating at 1125oC for 1 hour after long-term heated at 900oC after every 400 hours-heating. Then the results were analyzed from working conditions. It was found that the sample passed solutioning at 1125oC for 4 hours and aging at 845oC for 24 hours with the over thermal exposure showed the most stable phase stability with γ’ phase increasing after long-term simulated working conditions .


2015 ◽  
Vol 658 ◽  
pp. 14-18
Author(s):  
Tanaporn Rojhirunsakool ◽  
Duangkwan Thongpian ◽  
Nutthita Chuankrerkkul ◽  
Panyawat Wangyao

Nickel-base superalloys have been used as high temperature materials in land-base gas turbine application. When subjected to long term, high temperature service, large crack propagation was observed. Typical refurbishment method of these turbines is carried out by using TIG welding followed by post-weld standard heat treatment. However, new crack initiation is found in the heat-affected zone after TIG welding. Pre-weld heat treatment has been discovered to improves final γ + γ’ microstructure. This study focuses on the effect of pre-weld heat treatment temperature on final γ + γ’ microstructure. Seven different conditions of pre-weld heat treatment temperature were investigated. Scanning electron microscopy studies were carried out after pre-weld and post-weld heat treatments to compare the γ + γ’ microstructure and capture microcracks. The best pre-weld heat treatment temperature produces uniform distribution of finely dispersed γ’ precipitates in the γ matrix without post-weld crack.


Sign in / Sign up

Export Citation Format

Share Document