scholarly journals Multi-color imaging of sub-mitochondrial structures in living cells using structured illumination microscopy

Nanophotonics ◽  
2018 ◽  
Vol 7 (5) ◽  
pp. 935-947 ◽  
Author(s):  
Ida S. Opstad ◽  
Deanna L. Wolfson ◽  
Cristina I. Øie ◽  
Balpreet S. Ahluwalia

AbstractThe dimensions of mitochondria are close to the diffraction limit of conventional light microscopy techniques, making the complex internal structures of mitochondria unresolvable. In recent years, new fluorescence-based optical imaging techniques have emerged, which allow for optical imaging below the conventional limit, enabling super-resolution (SR). Possibly the most promising SR and diffraction-limited microscopy techniques for live-cell imaging are structured illumination microscopy (SIM) and deconvolution microscopy (DV), respectively. Both SIM and DV are widefield techniques and therefore provide fast-imaging speed as compared to scanning based microscopy techniques. We have exploited the capabilities of three-dimensional (3D) SIM and 3D DV to investigate different sub-mitochondrial structures in living cells: the outer membrane, the intermembrane space, and the matrix. Using different mitochondrial probes, each of these sub-structures was first investigated individually and then in combination. We describe the challenges associated with simultaneous labeling and SR imaging and the optimized labeling protocol and imaging conditions to obtain simultaneous three-color SR imaging of multiple mitochondrial regions in living cells. To investigate both mitochondrial dynamics and structural details in the same cell, the combined usage of DV for long-term time-lapse imaging and 3D SIM for detailed, selected time point analysis was a useful strategy.

2021 ◽  
Author(s):  
Anna Loeschberger ◽  
Yauheni Novikau ◽  
Ralf Netz ◽  
Marie-Christin Spindler ◽  
Ricardo Benavente ◽  
...  

Three-dimensional (3D) multicolor super-resolution imaging in the 50-100 nm range in fixed and living cells remains challenging. We extend the resolution of structured illumination microscopy (SIM) by an improved nonlinear iterative reconstruction algorithm that enables 3D multicolor imaging with improved spatiotemporal resolution at low illumination intensities. We demonstrate the performance of dual iterative SIM (diSIM) imaging cellular structures in fixed cells including synaptonemal complexes, clathrin coated pits and the actin cytoskeleton with lateral resolutions of 60-100 nm with standard fluorophores. Furthermore, we visualize dendritic spines in 70 micrometer thick brain slices with an axial resolution < 200 nm. Finally, we image dynamics of the endoplasmatic reticulum and microtubules in living cells with up to 255 frames/s.


2020 ◽  
Author(s):  
Jiji Chen ◽  
Hideki Sasaki ◽  
Hoyin Lai ◽  
Yijun Su ◽  
Jiamin Liu ◽  
...  

Abstract We demonstrate residual channel attention networks (RCAN) for restoring and enhancing volumetric time-lapse (4D) fluorescence microscopy data. First, we modify RCAN to handle image volumes, showing that our network enables denoising competitive with three other state-of-the-art neural networks. We use RCAN to restore noisy 4D super-resolution data, enabling image capture over tens of thousands of images (thousands of volumes) without apparent photobleaching. Second, using simulations we show that RCAN enables class-leading resolution enhancement, superior to other networks. Third, we exploit RCAN for denoising and resolution improvement in confocal microscopy, enabling ~2.5-fold lateral resolution enhancement using stimulated emission depletion (STED) microscopy ground truth. Fourth, we develop methods to improve spatial resolution in structured illumination microscopy using expansion microscopy ground truth, achieving improvements of ~1.4-fold laterally and ~3.4-fold axially. Finally, we characterize the limits of denoising and resolution enhancement, suggesting practical benchmarks for evaluating and further enhancing network performance.


2020 ◽  
Author(s):  
Jiji Chen ◽  
Hideki Sasaki ◽  
Hoyin Lai ◽  
Yijun Su ◽  
Jiamin Liu ◽  
...  

AbstractWe demonstrate residual channel attention networks (RCAN) for restoring and enhancing volumetric time-lapse (4D) fluorescence microscopy data. First, we modify RCAN to handle image volumes, showing that our network enables denoising competitive with three other state-of-the-art neural networks. We use RCAN to restore noisy 4D super-resolution data, enabling image capture over tens of thousands of images (thousands of volumes) without apparent photobleaching. Second, using simulations we show that RCAN enables class-leading resolution enhancement, superior to other networks. Third, we exploit RCAN for denoising and resolution improvement in confocal microscopy, enabling ∼2.5-fold lateral resolution enhancement using stimulated emission depletion (STED) microscopy ground truth. Fourth, we develop methods to improve spatial resolution in structured illumination microscopy using expansion microscopy ground truth, achieving improvements of ∼1.4-fold laterally and ∼3.4-fold axially. Finally, we characterize the limits of denoising and resolution enhancement, suggesting practical benchmarks for evaluating and further enhancing network performance.


2016 ◽  
Vol 09 (03) ◽  
pp. 1630010 ◽  
Author(s):  
Jianling Chen ◽  
Caimin Qiu ◽  
Minghai You ◽  
Xiaogang Chen ◽  
Hongqin Yang ◽  
...  

Optical microscopy allows us to observe the biological structures and processes within living cells. However, the spatial resolution of the optical microscopy is limited to about half of the wavelength by the light diffraction. Structured illumination microscopy (SIM), a type of new emerging super-resolution microscopy, doubles the spatial resolution by illuminating the specimen with a patterned light, and the sample and light source requirements of SIM are not as strict as the other super-resolution microscopy. In addition, SIM is easier to combine with the other imaging techniques to improve their imaging resolution, leading to the developments of diverse types of SIM. SIM has great potential to meet the various requirements of living cells imaging. Here, we review the recent developments of SIM and its combination with other imaging techniques.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Chao Hu ◽  
Li Shu ◽  
Xiaoshuai Huang ◽  
Jianglong Yu ◽  
liuju Li ◽  
...  

Abstract Mitochondrial cristae are the main site for oxidative phosphorylation, which is critical for cellular energy production. Upon different physiological or pathological stresses, mitochondrial cristae undergo remodeling to reprogram mitochondrial function. However, how mitochondrial cristae are formed, maintained, and remolded is still largely unknown due to the technical challenges of tracking mitochondrial crista dynamics in living cells. Here, using live-cell Hessian structured illumination microscopy combined with transmission electron microscopy, focused ion beam/scanning electron microscopy, and three-dimensional tomographic reconstruction, we show, in living cells, that mitochondrial cristae are highly dynamic and undergo morphological changes, including elongation, shortening, fusion, division, and detachment from the mitochondrial inner boundary membrane (IBM). In addition, we find that OPA1, Yme1L, MICOS, and Sam50, along with the newly identified crista regulator ATAD3A, control mitochondrial crista dynamics. Furthermore, we discover two new types of mitochondrial crista in dysfunctional mitochondria, “cut-through crista” and “spherical crista”, which are formed due to incomplete mitochondrial fusion and dysfunction of the MICOS complex. Interestingly, cut-through crista can convert to “lamellar crista”. Overall, we provide a direct link between mitochondrial crista formation and mitochondrial crista dynamics.


2017 ◽  
Vol 28 (20) ◽  
pp. 2734-2745 ◽  
Author(s):  
Matthew J. Niederhuber ◽  
Talley J. Lambert ◽  
Clarence Yapp ◽  
Pamela A. Silver ◽  
Jessica K. Polka

Carbon fixation in cyanobacteria makes a major contribution to the global carbon cycle. The cyanobacterial carboxysome is a proteinaceous microcompartment that protects and concentrates the carbon-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) in a paracrystalline lattice, making it possible for these organisms to fix CO2 from the atmosphere. The protein responsible for the organization of this lattice in beta-type carboxysomes of the freshwater cyanobacterium Synechococcus elongatus, CcmM, occurs in two isoforms thought to localize differentially within the carboxysome matrix. Here we use wide-field time-lapse and three-dimensional structured illumination microscopy (3D-SIM) to study the recruitment and localization of these two isoforms. We demonstrate that this superresolution technique is capable of distinguishing the localizations of the outer protein shell of the carboxysome and its internal cargo. We develop an automated analysis pipeline to analyze and quantify 3D-SIM images and generate a population-level description of the carboxysome shell protein, RuBisCO, and CcmM isoform localization. We find that both CcmM isoforms have similar spatial and temporal localization, prompting a revised model of the internal arrangement of the β-carboxysome.


Author(s):  
Kirti Prakash ◽  
Benedict Diederich ◽  
Stefanie Reichelt ◽  
Rainer Heintzmann ◽  
Lothar Schermelleh

Structured illumination microscopy (SIM) has emerged as an essential technique for three-dimensional (3D) and live-cell super-resolution imaging. However, to date, there has not been a dedicated workshop or journal issue covering the various aspects of SIM, from bespoke hardware and software development and the use of commercial instruments to biological applications. This special issue aims to recap recent developments as well as outline future trends. In addition to SIM, we cover related topics such as complementary super-resolution microscopy techniques, computational imaging, visualization and image processing methods.This article is part of the Theo Murphy meeting issue ‘Super-resolution structured illumination microscopy (part 1)’.


2018 ◽  
Author(s):  
Qixin Chen ◽  
Chengzhi Jin ◽  
Xintian Shao ◽  
Ruilin Guan ◽  
Zhiqi Tian ◽  
...  

AbstractCombining luminescent transition metal complex (LTMC) with super-resolution microscopy is an excellent strategy for the long-term visualization of the dynamics of subcellular structures in living cells. However, it remains unclear whether iridium(III) complexes are applicable for a particular type of super-resolution technique, structured illumination microscopy (SIM), to image subcellular structures.As described herein, we developed an iridium(III) dye, to track mitochondrial dynamics in living cells under SIM. The dye demonstrated excellent specificity and photostability and satisfactory cell permeability. While using SIM to image mitochondria, we achieved an approximately 80-nm resolution that allowed the clear observation of the structure of mitochondrial cristae. We used the dye to monitor and quantify mitochondrial dynamics relative to lysosomes, including fusion involved in mitophagy, and newly discovered mitochondria-lysosome contact (MLC) under different conditions. MLC remained intact and fusion vanished when five receptors, p62, NDP52, OPTN, NBR1, and TAX1BP1, were knocked out, suggesting that these two processes are independence.


2020 ◽  
Vol 52 (1) ◽  
pp. 369-393
Author(s):  
Minami Yoda

Quantifying submillimeter flows using optical diagnostic techniques is often limited by a lack of spatial resolution and optical access. This review discusses two super-resolution imaging techniques, structured illumination microscopy and total internal reflection fluorescence or microscopy, which can visualize bulk and interfacial flows, respectively, at spatial resolutions below the classic diffraction limits. First, we discuss the theory and applications of structured illumination for optical sectioning, i.e., imaging a thin slice of a flow illuminated over its entire volume. Structured illumination can be used to visualize the interior of multiphase flows such as sprays by greatly reducing secondary scattering. Second, the theory underlying evanescent waves is introduced, followed by a review of how total internal reflection microscopy has been used to visualize interfacial flows over the last 15 years. Both techniques, which are starting to be used in fluid mechanics, could significantly improve quantitative imaging of microscale and macroscale flows.


Sign in / Sign up

Export Citation Format

Share Document