scholarly journals Photonic welding points for arbitrary on-chip optical interconnects

Nanophotonics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 1679-1686 ◽  
Author(s):  
Zejie Yu ◽  
Yang Ma ◽  
Xiankai Sun

AbstractPhotonic integrated circuits (PICs) are an ideal platform for chip-scale computation and communication. To date, the integration density remains an outstanding problem that limits the further development of PIC-based photonic networks. Achieving low-loss waveguide routing with arbitrary configuration is crucial for both classical and quantum photonic applications. To manipulate light flows on a chip, the conventional wisdom relies on waveguide bends of large bending radii and adiabatic mode converters to avoid insertion losses from radiation leakage and modal mismatch, respectively. However, those structures usually occupy large footprints and thus reduce the integration density. To overcome this difficulty, this work presents a fundamentally new approach to turn light flows arbitrarily within an ultracompact footprint. A type of “photonic welding points” joining two waveguides of an arbitrary intersecting angle has been proposed and experimentally demonstrated. These devices with a footprint of less than 4 μm2can operate in the telecommunication band over a bandwidth of at least 140 nm with an insertion loss of less than 0.5 dB. Their fabrication is compatible with photonic foundry processes and does not introduce additional steps beyond those needed for the waveguides. Therefore, they are suitable for the mass production of PICs and will enhance the integration density to the next level.

Author(s):  
M. Rajarajan ◽  
S.SA. Obayya ◽  
B.M.A. Rahman ◽  
K.T.V. Grattan ◽  
H.A. El-Mikati

2021 ◽  
Author(s):  
MADHUSUDAN MISHRA ◽  
Nikhil Das

In this letter, we propose a new approach of hetero-cladding for realization of compact CMOS compatible silicon photonic directional couplers. The proposed hetero-cladding comprises ferroelectric BaTiO<sub>3</sub> (BTO) and SiO<sub>2</sub> to control the evanescent mode within the structure. The results show very small and identical coupling length for both TE and TM modes with reduced device cross-section, which promises for a huge reduction in the footprint of both conventional and programmable photonic integrated circuits. The concept can also be utilized to design compact, low loss and energy efficient phase shifters, other types of couplers, sensors etc.


2021 ◽  
Author(s):  
MADHUSUDAN MISHRA ◽  
Nikhil Das

<p><i>Abstract</i>— The present work proposes a new approach of hetero-cladding for silicon photonic directional couplers and outlines its contributions towards realization of a compact, tunable and energy efficient directional coupler. The proposed hetero-cladding comprises ferroelectric BaTiO<sub>3</sub> (BTO) and SiO<sub>2</sub>, to control the evanescent mode within the structure. The results show very small and identical coupling length for both TE and TM modes with reduced device cross-section, which promises for a huge reduction in the footprint of both conventional and programmable photonic integrated circuits (PICs). The proposed concept could also be utilized to design compact, low loss and energy efficient phase shifters and other types of couplers.</p>


2021 ◽  
Author(s):  
MADHUSUDAN MISHRA ◽  
Nikhil Das

In this letter, we propose a new approach of hetero-cladding for realization of compact CMOS compatible silicon photonic directional couplers. The proposed hetero-cladding comprises ferroelectric BaTiO<sub>3</sub> (BTO) and SiO<sub>2</sub> to control the evanescent mode within the structure. The results show very small and identical coupling length for both TE and TM modes with reduced device cross-section, which promises for a huge reduction in the footprint of both conventional and programmable photonic integrated circuits. The concept can also be utilized to design compact, low loss and energy efficient phase shifters, other types of couplers, sensors etc.


2020 ◽  
Vol 38 (12) ◽  
pp. 3273-3279
Author(s):  
Jeong Hwan Song ◽  
Tangla D. Kongnyuy ◽  
Peter De Heyn ◽  
Sebastien Lardenois ◽  
Roelof Jansen ◽  
...  

Nanophotonics ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 1571-1580 ◽  
Author(s):  
Chunlei Sun ◽  
Wenhao Wu ◽  
Yu Yu ◽  
Guanyu Chen ◽  
Xinliang Zhang ◽  
...  

AbstractSwitching and routing are critical functionalities for a reconfigurable bandwidth-dense optical network, and great efforts had been made to accommodate mode-division multiplexing technology. Although the reconfigurable routing for spatial-mode groups between different optical paths was realized recently, a demultiplexing-switching-multiplexing process is necessary. Here we present a simplified and compact on-chip 2×2 multimode switch that can be easily upgradable to a larger scale. Fully and reconfigurable routing between not only optical paths but also spatial modes is achieved. To obtain a low loss multimode processing, a novel structure free from demultiplexing and re-multiplexing operations is adopted. The switch enables minimum and maximum insertion losses of 0.3 and 1.2 dB, with a compact footprint of 433 μm×433 μm and low crosstalk of <−16.6 dB for all channels. It is further extended to two types of 4×4 switch fabrics with cross-bar and ring-bus architectures, as demonstrations of high-level integration. System characterization with 32 Gb/s high-speed modulated signals is also carried out, reaching up to 256 Gb/s aggregate throughput. These results verify a general solution of 2×2 multimode switch for reconfigurable inter-mode and inter-path routing applicable in large-scale and high-density multimode optical network.


1995 ◽  
Vol 413 ◽  
Author(s):  
L. Robitaille ◽  
C. L. Callender ◽  
J. P. Noad

ABSTRACTThis paper reports the fabrication and characterization of polyimide branching waveguides for on-chip optical signal distribution in GaAs-based optoelectronic integrated circuits (OEICs). Low-loss polyimide s-bends and splitters with good splitting ratios and angles considerably larger than similar structures made from inorganic (e.g. LiNbO3) and semiconductor (e.g. GaAs, InP) materials, have been successfully fabricated and tested. The effects of the radius of curvature, splitter angle and cladding materials on the optical losses are discussed.


2021 ◽  
Author(s):  
MADHUSUDAN MISHRA ◽  
Nikhil Das

<p><i>Abstract</i>— The present work proposes a new approach of hetero-cladding for silicon photonic directional couplers and outlines its contributions towards realization of a compact, tunable and energy efficient directional coupler. The proposed hetero-cladding comprises ferroelectric BaTiO<sub>3</sub> (BTO) and SiO<sub>2</sub>, to control the evanescent mode within the structure. The results show very small and identical coupling length for both TE and TM modes with reduced device cross-section, which promises for a huge reduction in the footprint of both conventional and programmable photonic integrated circuits (PICs). The proposed concept could also be utilized to design compact, low loss and energy efficient phase shifters and other types of couplers.</p>


2000 ◽  
Vol 147 (6) ◽  
pp. 382 ◽  
Author(s):  
M. Rajarajan ◽  
S.S.A. Obayya ◽  
B.M.A. Rahman ◽  
K.T.V. Grattan ◽  
H.A. El-Mikati

Author(s):  
Mayue Xie ◽  
Zhiguo Qian ◽  
Mario Pacheco ◽  
Zhiyong Wang ◽  
Rajen Dias ◽  
...  

Abstract Recently, a new approach for isolation of open faults in integrated circuits (ICs) was developed. It is based on mapping the radio-frequency (RF) magnetic field produced by the defective part fed with RF probing current, giving the name to Space Domain Reflectometry (SDR). SDR is a non-contact and nondestructive technique to localize open defects in package substrates, interconnections and semiconductor devices. It provides 2D failure isolation capability with defect localization resolution down to 50 microns. It is also capable of scanning long traces in Si. This paper describes the principles of the SDR and its application for the localization of open and high resistance defects. It then discusses some analysis methods for application optimization, and gives examples of test samples as well as case studies from actual failures.


Sign in / Sign up

Export Citation Format

Share Document