scholarly journals Recent Advances in Squaraine Dyes for Bulk-Heterojunction Organic Solar Cells

2019 ◽  
Vol 6 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Yao Chen ◽  
Weigang Zhu ◽  
Jianglin Wu ◽  
Yan Huang ◽  
Antonio Facchetti ◽  
...  

Abstract Squaraine (SQ) dyes are an important class of electron-donating (donors or p-type) semiconductors for organic solar cells (OSC) due to their facile synthetic access, broad optical absorption with high oscillator strengths, and chemical robustness. Blending them with compatible electron-acceptors (acceptors or n-type) yields OSC devices known as bulk-heterojunction (BHJ) small molecule donor organic solar cells (SMD-OSCs). Through extensive research on materials design, synthesis, characterization, and device optimization over the past ˝ve years, SMD-OSCs employing SQ-based structures have achieved remarkable increases in device power conversion e˚ciency (PCE), now approaching 8%. Although these PCEs have not yet equaled the performance of state- of-the art donor polymers and some other SMD semiconductors, SQ-based OSC progress highlights successful and generalizable strategies for small molecule solar cells that should lead to future advances. In this review, recent developments in SQ-based OSCs are discussed and analyzed.

RSC Advances ◽  
2015 ◽  
Vol 5 (9) ◽  
pp. 6286-6293 ◽  
Author(s):  
M. Nazim ◽  
Sadia Ameen ◽  
M. Shaheer Akhtar ◽  
Hyung-Kee Seo ◽  
Hyung-Shik Shin

Novel furan-bridged thiazolo[5,4-d]thiazole based π-conjugated organic chromophore (RFTzR) was formulated and utilized for the fabrication of solution-processed small molecule organic solar cells (SMOSCs).


2015 ◽  
Vol 5 (8) ◽  
pp. 1401720 ◽  
Author(s):  
Ming Cheng ◽  
Bo Xu ◽  
Cheng Chen ◽  
Xichuan Yang ◽  
Fuguo Zhang ◽  
...  

2020 ◽  
Vol 21 (21) ◽  
pp. 8085
Author(s):  
Giacomo Forti ◽  
Andrea Nitti ◽  
Peshawa Osw ◽  
Gabriele Bianchi ◽  
Riccardo Po ◽  
...  

The introduction of the IDIC/ITIC families of non-fullerene acceptors has boosted the photovoltaic performances of bulk-heterojunction organic solar cells. The fine tuning of the photophysical, morphological and processability properties with the aim of reaching higher and higher photocurrent efficiencies has prompted uninterrupted worldwide research on these peculiar families of organic compounds. The main strategies for the modification of IDIC/ITIC compounds, described in several contributions published in the past few years, can be summarized and classified into core modification strategies and end-capping group modification strategies. In this review, we analyze the more recent advances in this field (last two years), and we focus our attention on the molecular design proposed to increase photovoltaic performance with the aim of rationalizing the general properties of these families of non-fullerene acceptors.


2020 ◽  
Vol 44 (14) ◽  
pp. 12100-12111
Author(s):  
Abdullah ◽  
Eun‐Bi Kim ◽  
M. Shaheer Akhtar ◽  
Hyung‐Shik Shin ◽  
Sadia Ameen

2019 ◽  
Vol 7 (22) ◽  
pp. 6641-6648
Author(s):  
Rafael Sandoval-Torrientes ◽  
Alexey Gavrik ◽  
Anna Isakova ◽  
Abasi Abudulimu ◽  
Joaquín Calbo ◽  
...  

Geminate recombination rates are successfully predicted for series of small-molecule bulk heterojunction solar cells applying the Marcus–Levich–Jortner equation.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ruimin Zhou ◽  
Zhaoyan Jiang ◽  
Chen Yang ◽  
Jianwei Yu ◽  
Jirui Feng ◽  
...  

AbstractThe high efficiency all-small-molecule organic solar cells (OSCs) normally require optimized morphology in their bulk heterojunction active layers. Herein, a small-molecule donor is designed and synthesized, and single-crystal structural analyses reveal its explicit molecular planarity and compact intermolecular packing. A promising narrow bandgap small-molecule with absorption edge of more than 930 nm along with our home-designed small molecule is selected as electron acceptors. To the best of our knowledge, the binary all-small-molecule OSCs achieve the highest efficiency of 14.34% by optimizing their hierarchical morphologies, in which the donor or acceptor rich domains with size up to ca. 70 nm, and the donor crystals of tens of nanometers, together with the donor-acceptor blending, are proved coexisting in the hierarchical large domain. All-small-molecule photovoltaic system shows its promising for high performance OSCs, and our study is likely to lead to insights in relations between bulk heterojunction structure and photovoltaic performance.


2014 ◽  
Vol 24 (23) ◽  
pp. 3543-3550 ◽  
Author(s):  
Alexander Sharenko ◽  
Martijn Kuik ◽  
Michael F. Toney ◽  
Thuc-Quyen Nguyen

2008 ◽  
Vol 92 (9) ◽  
pp. 093306 ◽  
Author(s):  
Youngkyoo Kim ◽  
Minjung Shin ◽  
Inhyuk Lee ◽  
Hwajeong Kim ◽  
Sandrine Heutz

Sign in / Sign up

Export Citation Format

Share Document