nanoscale phase separation
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 19)

H-INDEX

31
(FIVE YEARS 2)

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2379
Author(s):  
Vyacheslav I. Yukalov ◽  
Elizaveta P. Yukalova

Materials with nanoscale phase separation are considered. A system representing a heterophase mixture of ferromagnetic and paramagnetic phases is studied. After averaging over phase configurations, a renormalized Hamiltonian is derived describing the coexisting phases. The system is characterized by direct and exchange interactions and an external magnetic field. The properties of the system are studied numerically. The stability conditions define the stable state of the system. At a temperature of zero, the system is in a pure ferromagnetic state. However, at finite temperature, for some interaction parameters, the system can exhibit a zeroth-order nucleation transition between the pure ferromagnetic phase and the mixed state with coexisting ferromagnetic and paramagnetic phases. At the nucleation transition, the finite concentration of the paramagnetic phase appears via a jump.


2021 ◽  
Vol 6 (4) ◽  
pp. 45
Author(s):  
Gaetano Campi ◽  
Antonio Bianconi ◽  
Alessandro Ricci

While spin striped phases in La2−xSrxNiO4+y for 0.25 < x < 0.33 are the archetypal case of a 1D spin density wave (SDW) phase in doped antiferromagnetic strongly correlated perovskites, few information is available on the SDW spatial organization. In this context, we have measured the spatial variation of the wave vector of the SDW reflection profile by scanning micro X-ray diffractions with a coherent beam. We obtained evidence of a SDW order–disorder transition by lowering a high temperature phase (T > 50 K) to a low temperature phase (T < 50 K). We have identified quasi-commensurate spin stripe puddles in the ordered phase at 50 < T < 70 K, while the low temperature spin glassy phase presents a nanoscale phase separation of T = 30 K, with the coexistence of quasi-commensurate and incommensurate spin stripe puddles assigned to the interplay of quantum frustration and strong electronic correlations.


2021 ◽  
Vol 6 (4) ◽  
pp. 40
Author(s):  
Gaetano Campi ◽  
Antonio Bianconi

Nanoscale phase separation (NPS), characterized by particular types of correlated disorders, plays an important role in the functionality of high-temperature superconductors (HTS). Our results show that multiscale heterogeneity is an essential ingredient of quantum functionality in complex materials. Here, the interactions developing between different structural units cause dynamical spatiotemporal conformations with correlated disorder; thus, visualizing conformational landscapes is fundamental for understanding the physical properties of complex matter and requires advanced methodologies based on high-precision X-ray measurements. We discuss the connections between the dynamical correlated disorder at nanoscale and the functionality in oxygen-doped perovskite superconducting materials.


2021 ◽  
Vol 125 (37) ◽  
pp. 20592-20605
Author(s):  
Nora C. Buggy ◽  
Yifeng Du ◽  
Mei-Chen Kuo ◽  
Soenke Seifert ◽  
Ryan J. Gasvoda ◽  
...  

2021 ◽  
Vol 5 (9) ◽  
Author(s):  
Johan F. S. Christensen ◽  
Søren S. Sørensen ◽  
Theany To ◽  
Mathieu Bauchy ◽  
Morten M. Smedskjaer

Author(s):  
Dan Huang ◽  
Tianyu Ma ◽  
Dennis E. Brown ◽  
Saul H. Lapidus ◽  
Yang Ren ◽  
...  

Soft Matter ◽  
2021 ◽  
Author(s):  
Yoichi Takanishi

Herein, the local nano-structure in mixtures of cholesteric liquid crystals and a bent-core molecule was analyzed via the small-angle X-ray scattering.


Author(s):  
Jinzhao Qin ◽  
Zhihao Chen ◽  
Pengqing Bi ◽  
Yang Yang ◽  
Jianqi Zhang ◽  
...  

By constructing a ternary cell with a B1:BO-2Cl:BO-4Cl donor:acceptors combination, an outstanding power conversion efficiency (PCE) of 17.0% (certified to be 16.9%) has been realized for all-small-molecule organic solar cells (ASM-OSCs).


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1129
Author(s):  
Wenjie Yuan ◽  
Fenghua Chen ◽  
Shan Li ◽  
Youpei Du ◽  
Zhenhua Luo ◽  
...  

In this paper, a set of silicon hybrid phenolic resins (SPF) with high Si-content were prepared by mixing phenolic resins with self-synthesized silicon resins. In order to obtain the nanoscale phase structure, condensation degree and the amount of Si-OH groups in silicon resins were controlled by the amount of inhibitor ethanol in the hydrolytic condensation polymerization of siloxane. Increasing the amount of ethanol resulted in more silanol groups and a lower degree of condensation for silicon resins, which then led to more formation of Si-O-Ph bonds in hybrid resin and improved compatibility between silicon resin and phenolic resin. When 400% ethanol by weight of siloxane was used in the sample SPF-4, nanoscale phase separation resulted. The residual weight of the cured SPF-4 at 1000 °C (R1000) significantly increased compared to pure phenolic resins. The result of the oxyacetylene flame ablation and the Cone Calorimeter test confirmed the improved ablative property and flammability after the modification. The performance improvement of the cured SPF-4 was attributed to the nanoscale phase structure and high silicon content, which promoted the formation of dense silica protective layers during pyrolysis.


Sign in / Sign up

Export Citation Format

Share Document