scholarly journals The in vitro antitrypanosomal activity of Albizia gummifera leaf extracts

2021 ◽  
Vol 2 (1) ◽  
pp. 33-39
Author(s):  
Deborah Adebukola Oloruntola ◽  
Ebenezer Oluyemi Dada ◽  
Muftau Kolawole Oladunmoye

Abstract For the control and treatment of trypanosomiasis, a limited number of chemotherapeutic drugs with mild side effects are available. As a result, a quest for a less toxic herbal treatment for trypanosomiasis is needed. Ethanolic extract of A. gummifera leaf (EEAL) and aqueous extract of Albizia. gummifera leaf (AEAL) were tested for antitrypanosomal activity against Trypanosoma brucei brucei in vitro. We first compared the phytochemical concentrations of EEAL and AEAL and discovered that EEAL had higher phytochemical concentrations on average than AEAL: flavonoids (4.26 mg/g vs 2.50 mg/g); alkaloids (38.40 mg/g vs 19.80 mg/g); tannins (230.7 mg/g vs 45.74 mg/g) and saponins (128.66 vs 44.33g/g). From the result of phytochemical concentrations of the two compounds, the higher values observed in flavonoids and alkaloid of EEAL led us to hypothesize that EEAL would have greater trypanocidal activity. Following that, EEAL and AEAL were tested for antitrypanosomal activity in vitro. Forty µl of blood holding in about 25±8 parasites/field was mixed with 20 µl of the EEAL and AEAL solutions of 100, 80, 60 mg/ml to produce an efficacious test concentration of 25, 20 and 15 mg/ml, sequentially. The extracts inhibited parasite motility and eliminated the organisms at the concentrations used in vitro, except for 15 mg/ml AEAL and 20 mg/ml AEAL. Following the screening, the Albizia gummifera ethanolic extract found to have positive in vitro trypanocidal activity. More research is needed to determine the concentrations of the extract for the in vivo test.

Nematology ◽  
2019 ◽  
Vol 21 (8) ◽  
pp. 837-846
Author(s):  
Ali Roshan-Bakhsh ◽  
Ebrahim Pourjam ◽  
Mahdi Ayyari ◽  
Majid Pedram

Summary Extracts of nine agricultural wastes prepared with five different solvents were assessed for their potential nematicidal activity against three nematode species, Aphelenchus avenae, Meloidogyne incognita and Pratylenchus neglectus, in in vitro condition. The 50% v/v hydro-ethanolic extracts showed the highest performance for two tested plant wastes of cabbage leaves and faba bean pods. These two extracts were tested on nematodes in three different concentrations. The highest in vitro nematistatic activity was recorded for 3000 and 1500 ppm of cabbage leaf extracts by 100% paralysis of all three nematode species after 48 h, and the highest nematicidal activity was recorded for the above-mentioned extract by 25-100% mortality depending on nematode species and extract concentration. A 14-94% mortality was recorded for all three species of nematodes after treatment with faba bean pod hydro-ethanolic extract in in vitro conditions. Hatching inhibition and repellent activity of cabbage leaf and faba bean pod extracts were observed in P. neglectus and M. incognita. In vivo assays confirmed the in vitro results when both of the extracts showed moderate to high inhibition of nematode population development and nematode infection parameters on tomato root system in pot experiments.


2015 ◽  
Vol 61 (2) ◽  
pp. 50-62
Author(s):  
P.A. Onyeyili ◽  
K. Aliyoo

Summary The control of trypanosomosis in animals and humans based on chemotherapy is limited and not ideal, since the agents used are associated with severe side effects, and emergence of relapse and drug resistant parasites. The need for the development of new, cheap and safe compounds stimulated this study. Three concentrations (211, 21.1 and 2.11 mg per ml) of chloroform stem bark extract of Annona muricata were screened for trypanocidal activity against Trypanosoma brucei brucei in vitro. Also, two doses (200 mg per kg and 100 mg per kg) of the extract were evaluated for trypanocidal activity in rats infected with the parasite. Haematological parameters were determined on day 1 post infection and on days 1, 6 and 30-post extract treatment. The extracts inhibited parasite motility and totally eliminated the organisms at the concentrations used in vitro. The extract also showed promising in vivo trypanocidal activity. The observed in vitro and in vivo trypanocidal activities may be due to the presence of bioactive compounds present in the extracts as seen in this study. The extract also improved the observed decreases in haematological parameters of the treated rats, which may be due to their ability to decrease parasite load. The observed oral LD50 of 1,725.05 mg per kg of the chloroform A. muricata extract using up and down method is an indication of very low toxicity, implying that the extract could be administered with some degree of safety.


2018 ◽  
Vol 24 (15) ◽  
pp. 1639-1651 ◽  
Author(s):  
Xian-ling Qian ◽  
Jun Li ◽  
Ran Wei ◽  
Hui Lin ◽  
Li-xia Xiong

Background: Anticancer chemotherapeutics have a lot of problems via conventional Drug Delivery Systems (DDSs), including non-specificity, burst release, severe side-effects, and damage to normal cells. Owing to its potential to circumventing these problems, nanotechnology has gained increasing attention in targeted tumor therapy. Chemotherapeutic drugs or genes encapsulated in nanoparticles could be used to target therapies to the tumor site in three ways: “passive”, “active”, and “smart” targeting. Objective: To summarize the mechanisms of various internal and external “smart” stimulating factors on the basis of findings from in vivo and in vitro studies. Method: A thorough search of PubMed was conducted in order to identify the majority of trials, studies and novel articles related to the subject. Results: Activated by internal triggering factors (pH, redox, enzyme, hypoxia, etc.) or external triggering factors (temperature, light of different wavelengths, ultrasound, magnetic fields, etc.), “smart” DDSs exhibit targeted delivery to the tumor site, and controlled release of chemotherapeutic drugs or genes. Conclusion: In this review article, we summarize and classify the internal and external triggering mechanism of “smart” nanoparticle-based DDSs in targeted tumor therapy, and the most recent research advances are illustrated for better understanding.


2020 ◽  
Vol 21 ◽  
Author(s):  
Boniface Pone ◽  
Ferreira Igne Elizabeth

: Neglected tropical diseases (NTDs) are responsible for over 500,000 deaths annually and are characterized by multiple disabilities. Leishmaniasis and Chagas disease are among the most severe NTDs, and are caused by the Leishmania sp, and Trypanosoma cruzi, respectively. Glucantime, pentamidine and miltefosine are commonly used to treat leishmaniasis, whereas nifurtimox, benznidazole are current treatments for Chagas disease. However, these treatments are associated with drug resistance, and severe side effects. Hence, the development of synthetic products, especially those containing N02, F, or Cl, which chemical groups are known to improve the biological activity. The present work summarizes the information on the antileishmanial and antitrypanosomal activity of nitro-, chloro-, and fluoro-synthetic derivatives. Scientific publications referring to halogenated derivatives in relation to antileishmanial and antitrypanosomal activities were hand searched in databases such as SciFinder, Wiley, Science Direct, PubMed, ACS, Springer, Scielo, and so on. According to the literature information, more than 90 compounds were predicted as lead molecules with reference to their IC50/EC50 values in in vitro studies. It is worth to mention that only active compounds with known cytotoxic effects against mammalian cells were considered in the present study. The observed activity was attributed to the presence of nitro-, fluoro- and chloro-groups in the compound backbone. All in all, nitro and h0alogenated derivatives are active antileishmanial and antitrypanosomal compounds and can serve as baseline for the development of new drugs against leishmaniasis and Chagas disease. However, efforts on in vitro and in vivo toxicity studies of the active synthetic compounds is still needed. Pharmacokinetic studies, and the mechanism of action of the promising compounds need to be explored. The use of new catalysts and chemical transformation can afford unexplored halogenated compounds with improved antileishmanial and antitrypanosomal activity.


2021 ◽  
pp. 114019
Author(s):  
Natália Carnevalli Miranda ◽  
Ester Cristina Borges Araujo ◽  
Allisson Benatti Justino ◽  
Yusmaris Cariaco ◽  
Caroline Martins Mota ◽  
...  

1996 ◽  
Vol 40 (11) ◽  
pp. 2567-2572 ◽  
Author(s):  
J R Sufrin ◽  
D Rattendi ◽  
A J Spiess ◽  
S Lane ◽  
C J Marasco ◽  
...  

Fifteen purine nucleosides and their O-acetylated ester derivatives were examined for in vitro antitrypanosomal activity against the LAB 110 EATRO isolate of Trypanosoma brucei brucei and two clinical isolates of Trypanosoma brucei rhodesiense. Initial comparisons of activity were made for the LAB 110 EATRO isolate. Three nucleoside analogs exhibited no significant activity (50% inhibitory concentrations [IC50s] of > 100 microM), whether they were O acetylated or unacetylated; three nucleosides showed almost equal activity (IC50s of < 5 microM) for the parent compound and the O-acetylated derivative; nine nucleosides showed significantly improved activity (> or = 3-fold) upon O acetylation; of these nine analogs, six displayed activity at least 10-fold greater than that of their parent nucleosides. The most significant results were those for four apparently inactive compounds which, upon O acetylation, displayed IC50s of < or = 25 microM. When the series of compounds was tested against T. brucei rhodesiense isolates (KETRI 243 and KETRI 269), their antitrypanosomal effects were comparable to those observed for the EATRO 110 strain. Thus, our studies of purine nucleosides have determined that O acetylation consistently improved their in vitro antitrypanosomal activity. This observed phenomenon was independent of their cellular enzyme targets (i.e., S-adenosylmethionine, polyamine, or purine salvage pathways). On the basis of our results, the routine preparation of O-acetylated purine nucleosides for in vitro screening of antitrypanosomal activity is recommended, since O acetylation transformed several inactive nucleosides into compounds with significant activity, presumably by improving uptake characteristics. O-acetylated purine nucleosides may offer in vivo therapeutic advantages compared with their parent nucleosides, and this possibility should be considered in future evaluations of this structural class of trypanocides.


Phytomedicine ◽  
1998 ◽  
Vol 5 (1) ◽  
pp. 47-53 ◽  
Author(s):  
M.C. Courrèges ◽  
F. Benencia ◽  
F.C. Coulombié ◽  
C.E. Coto

Sign in / Sign up

Export Citation Format

Share Document