scholarly journals Demand response power system optimization in presence of renewable energy sources

Author(s):  
Virgil Dumbrava ◽  
George Cristian Lazaroiu ◽  
Gabriel Bazacliu ◽  
Dario Zaninelli

Abstract This paper optimizes the price-based demand response of a large customer in a power system with stochastic production and classical fuel-supplied power plants. The implemented method of optimization, under uncertainty, is helpful to model both the utility functions for the consumers and their technical limitations. The consumers exposed to price-based demand can reduce their cost for electricity procurement by modifying their behavior, possibly shifting their consumption during the day to periods with low electricity prices. The demand is considered elastic to electricity price if the consumer is willing and capable to buy various amounts of energy at different price levels, the demand function being represented as purchasing bidding blocks. The demand response is seen also by the scientific literature as a possible source of the needed flexibility of modern power systems, while the flexibility of conventional generation technologies is restricted by technical constraints, such as ramp rates. This paper shows how wind power generation affects short term operation of the electricity system. Fluctuations in the amount of wind power fed into the grid require, without storage capacities, compensating changes in the output of flexible generators or in the consumers’ behavior. In the presented case study, we show the minimization of the overall costs in presence of stochastic wind power production. For highlighting the variability degree of production from renewable sources, four scenarios of production were formulated, with different probabilities of occurrence. The contribution brought by the paper is represented by the optimization model for demand-response of a large customer in a power system with fossil fueled generators and intermittent renewable energy sources. The consumer can reduce the power system costs by modifying his demand. The demand function is represented as purchasing bidding blocks for the possible price forecasted realizations. The consumer benefit function is modelled as a piecewise linear function.

Author(s):  
Mykola Kuznietsov ◽  
Olha Lysenko ◽  
Oleksandr Melnyk

The paper is devoted to solving the balancing problem in local power systems with renewable energy sources. For a power system optimization problem, whose operation depends on random weather factors, a convex parameter optimization or optimal control problem was solved using controlled generation, for each individual realization of a random process as a deterministic function, and then statistical processing of results over a set of random realizations was performed and distribution density functions of the desired target function were constructed, followed by estimation of expected values and their confidence intervals. The process describing current deviations of generated power from mean value is modelled as discrete stray model and has properties of Ornstein-Uhlenbeck process, which allowed varying the duration of unit interval, in particular to select data bases of operating objects with inherent temporal discreteness of their monitoring systems. Random components are investigated and modelled, while the average values are considered to be deterministic and are provided within a predictable schedule using also traditional energy sources (centralised power grid). A mathematical model of the combined operation of renewable energy sources in a system with variable load, electric storage device and auxiliary regulating generator is implemented as a scheme of sequential generation and consumption models and random processes describing the current state of the power system. The operation of the electricity accumulators is dependent on the processes mentioned, but in the full balance, it appears together with generation or load losses, which are cumulative sums of unbalanced power and may have a different distribution from the normal one. However, these processes are internal, relating to the redistribution of energy within a generation system whose capacity is generally described satisfactorily, given the relevant criteria, by a normal law. Under this condition, it is possible to estimate the probability of different circumstances - over- or under-generation, that is, to give a numerical estimate of the reliability of energy supply.


2020 ◽  
Vol 11 (4) ◽  
pp. 2581-2592
Author(s):  
Jianwei Gao ◽  
Zeyang Ma ◽  
Yu Yang ◽  
Fangjie Gao ◽  
Guiyu Guo ◽  
...  

Author(s):  
Abdulla Ahmed ◽  
Tong Jiang

<p>The wind energy plays an important role in power system because of its renewable, clean and free energy. However, the penetration of wind power (WP) into the power grid system (PGS) requires an efficient energy storage systems (ESS). compressed air energy storage (CAES) system is one of the most ESS technologies which can alleviate the intermittent nature of the renewable energy sources (RES). Nyala city power plant in Sudan has been chosen as a case study because the power supply by the existing power plant is expensive due to high costs for fuel transport and the reliability of power supply is low due to uncertain fuel provision. This paper presents a formulation of security-constrained unit commitment (SCUC) of diesel power plant (DPP) with the integration of CAES and PW. The optimization problem is modeled and coded in MATLAB which solved with solver GORUBI 8.0. The results show that the proposed model is suitable for integration of renewable energy sources (RES) into PGS with ESS and helpful in power system operation management.</p>


2020 ◽  
Vol 209 ◽  
pp. 06022
Author(s):  
Vu Minh Phap ◽  
Doan Van Binh ◽  
Nguyen Hoai Nam ◽  
A. V. Edelev ◽  
M. A. Marchenko

Currently, Vietnam‘s energy source structure is being changed by which renewable energy sources play more important role to meet the electricity demand and reduce greenhouse gas emissions from fossil energy sources. Vietnam’s energy development strategy determines to build some renewable energy centers, of which Ninh Thuan is the first province designated to become a national renewable energy center. This is based on Ninh Thuan’s endowment as a province having the largest renewable energy potential in Vietnam. Development of a large renewable energy center allows power system planners to overcome the mismatch in timescales associated with developing transmission power grid and renewable energy generation. Besides, renewable energy center can facilitate a significant pipeline of large-scale renewable energy and storage projects. However, Ninh Thuan province is far away from the major load centers of Vietnam so the calculation and analysis of economic indicators need to be studied. This paper will present the results of the analysis of economic indicators of major renewable electricity sources in Ninh Thuan (onshore wind power, offshore wind power, solar power) to provide scientific arguments for developing a renewable energy center in Vietnam. Also the paper addresses the problem of the large-scale penetration of renewable energy into the power system of Vietnam. The proposed approach presents the optimization of operational decisions in different power generation technologies as a Markov decision process. It uses a stochastic base model that optimizes a deterministic lookahead model. The first model applies the stochastic search to optimize the operation of power sources. The second model captures hourly variations of renewable energy over a year. The approach helps to find the optimal generation configuration under different market conditions.


Author(s):  
Takahiro Uehara ◽  
Dang Ngoc Son ◽  
Hidehito Matayoshi ◽  
Mohamed Lotfy ◽  
Tomonobu Senju ◽  
...  

AbstractIn response to mounting concerns regarding environmental problem and depletion of Energy Resources, the introduction of Renewable Energy Sources (RESs), has been advancing in recent years. The system frequency deviation is a serious problem for a RESs-integrated power system. In this paper, we propose a system frequency control method using the automated demand response (ADR) for an isolated power system with RESs. The ADR can automatically adjust the consumption power of appliances after receiving the DR signal. It is assumed that consumption power of controllable loads is automatically varied based on the electricity price information from the real-time pricing (RTP). This method improves the supply-demand balancing, and hence the system frequency control is achieved. Furthermore, the stability of controller is demonstrated by indicating the poles of the control system.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3412 ◽  
Author(s):  
Lei Liu ◽  
Hidehito Matayoshi ◽  
Mohammed Lotfy ◽  
Manoj Datta ◽  
Tomonobu Senjyu

Renewable energy sources (RESs), as clean, abundant, and inexhaustible source of energy, have developed quickly in recent years and played more and more important roles around the world. However, RESs also have some disadvantages, such as the weakness of stability, and by the the estimated increase of utilizing RESs in the near future, researchers began to give more attention to these issues. This paper presents a novel output power fluctuate compensation scheme in the small-scale power system, verifying the effect of output power control using storage battery, demand-response and RESs. Four scenarios are considered in the proposed approach: real-time pricing demand-response employment, RESs output control use and both of demand-response and RESs output control implementation. The performance of the proposed control technique is investigated using the real 10-bus power system model of Okinawa island, Japan. Moreover, the system stability is checked using the pole-zero maps for all of the control loops associated with the proposed scheme. The robustness and effectiveness of the proposed method was verified by simulation using Matlab ® /Simulink ® .


Sign in / Sign up

Export Citation Format

Share Document