scholarly journals CloudLM: a Cloud-based Language Model for Machine Translation

2016 ◽  
Vol 105 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Jorge Ferrández-Tordera ◽  
Sergio Ortiz-Rojas ◽  
Antonio Toral

Abstract Language models (LMs) are an essential element in statistical approaches to natural language processing for tasks such as speech recognition and machine translation (MT). The advent of big data leads to the availability of massive amounts of data to build LMs, and in fact, for the most prominent languages, using current techniques and hardware, it is not feasible to train LMs with all the data available nowadays. At the same time, it has been shown that the more data is used for a LM the better the performance, e.g. for MT, without any indication yet of reaching a plateau. This paper presents CloudLM, an open-source cloud-based LM intended for MT, which allows to query distributed LMs. CloudLM relies on Apache Solr and provides the functionality of state-of-the-art language modelling (it builds upon KenLM), while allowing to query massive LMs (as the use of local memory is drastically reduced), at the expense of slower decoding speed.

2016 ◽  
Vol 4 ◽  
pp. 477-490 ◽  
Author(s):  
Ehsan Shareghi ◽  
Matthias Petri ◽  
Gholamreza Haffari ◽  
Trevor Cohn

Efficient methods for storing and querying are critical for scaling high-order m-gram language models to large corpora. We propose a language model based on compressed suffix trees, a representation that is highly compact and can be easily held in memory, while supporting queries needed in computing language model probabilities on-the-fly. We present several optimisations which improve query runtimes up to 2500×, despite only incurring a modest increase in construction time and memory usage. For large corpora and high Markov orders, our method is highly competitive with the state-of-the-art KenLM package. It imposes much lower memory requirements, often by orders of magnitude, and has runtimes that are either similar (for training) or comparable (for querying).


2019 ◽  
Author(s):  
Negacy D. Hailu ◽  
Michael Bada ◽  
Asmelash Teka Hadgu ◽  
Lawrence E. Hunter

AbstractBackgroundthe automated identification of mentions of ontological concepts in natural language texts is a central task in biomedical information extraction. Despite more than a decade of effort, performance in this task remains below the level necessary for many applications.Resultsrecently, applications of deep learning in natural language processing have demonstrated striking improvements over previously state-of-the-art performance in many related natural language processing tasks. Here we demonstrate similarly striking performance improvements in recognizing biomedical ontology concepts in full text journal articles using deep learning techniques originally developed for machine translation. For example, our best performing system improves the performance of the previous state-of-the-art in recognizing terms in the Gene Ontology Biological Process hierarchy, from a previous best F1 score of 0.40 to an F1 of 0.70, nearly halving the error rate. Nearly all other ontologies show similar performance improvements.ConclusionsA two-stage concept recognition system, which is a conditional random field model for span detection followed by a deep neural sequence model for normalization, improves the state-of-the-art performance for biomedical concept recognition. Treating the biomedical concept normalization task as a sequence-to-sequence mapping task similar to neural machine translation improves performance.


2021 ◽  
Author(s):  
Oscar Nils Erik Kjell ◽  
H. Andrew Schwartz ◽  
Salvatore Giorgi

The language that individuals use for expressing themselves contains rich psychological information. Recent significant advances in Natural Language Processing (NLP) and Deep Learning (DL), namely transformers, have resulted in large performance gains in tasks related to understanding natural language such as machine translation. However, these state-of-the-art methods have not yet been made easily accessible for psychology researchers, nor designed to be optimal for human-level analyses. This tutorial introduces text (www.r-text.org), a new R-package for analyzing and visualizing human language using transformers, the latest techniques from NLP and DL. Text is both a modular solution for accessing state-of-the-art language models and an end-to-end solution catered for human-level analyses. Hence, text provides user-friendly functions tailored to test hypotheses in social sciences for both relatively small and large datasets. This tutorial describes useful methods for analyzing text, providing functions with reliable defaults that can be used off-the-shelf as well as providing a framework for the advanced users to build on for novel techniques and analysis pipelines. The reader learns about six methods: 1) textEmbed: to transform text to traditional or modern transformer-based word embeddings (i.e., numeric representations of words); 2) textTrain: to examine the relationships between text and numeric/categorical variables; 3) textSimilarity and 4) textSimilarityTest: to computing semantic similarity scores between texts and significance test the difference in meaning between two sets of texts; and 5) textProjection and 6) textProjectionPlot: to examine and visualize text within the embedding space according to latent or specified construct dimensions (e.g., low to high rating scale scores).


2020 ◽  
Author(s):  
Mayla R Boguslav ◽  
Negacy D Hailu ◽  
Michael Bada ◽  
William A Baumgartner ◽  
Lawrence E Hunter

AbstractBackgroundAutomated assignment of specific ontology concepts to mentions in text is a critical task in biomedical natural language processing, and the subject of many open shared tasks. Although the current state of the art involves the use of neural network language models as a post-processing step, the very large number of ontology classes to be recognized and the limited amount of gold-standard training data has impeded the creation of end-to-end systems based entirely on machine learning. Recently, Hailu et al. recast the concept recognition problem as a type of machine translation and demonstrated that sequence-to-sequence machine learning models had the potential to outperform multi-class classification approaches. Here we systematically characterize the factors that contribute to the accuracy and efficiency of several approaches to sequence-to-sequence machine learning.ResultsWe report on our extensive studies of alternative methods and hyperparameter selections. The results not only identify the best-performing systems and parameters across a wide variety of ontologies but also illuminate about the widely varying resource requirements and hyperparameter robustness of alternative approaches. Analysis of the strengths and weaknesses of such systems suggest promising avenues for future improvements as well as design choices that can increase computational efficiency with small costs in performance. Bidirectional Encoder Representations from Transformers for Biomedical Text Mining (BioBERT) for span detection (as previously found) along with the Open-source Toolkit for Neural Machine Translation (OpenNMT) for concept normalization achieve state-of-the-art performance for most ontologies in CRAFT Corpus. This approach uses substantially fewer computational resources, including hardware, memory, and time than several alternative approaches.ConclusionsMachine translation is a promising avenue for fully machine-learning-based concept recognition that achieves state-of-the-art results on the CRAFT Corpus, evaluated via a direct comparison to previous results from the 2019 CRAFT Shared Task. Experiments illuminating the reasons for the surprisingly good performance of sequence-to-sequence methods targeting ontology identifiers suggest that further progress may be possible by mapping to alternative target concept representations. All code and models can be found at: https://github.com/UCDenver-ccp/Concept-Recognition-as-Translation.


2020 ◽  
Vol 34 (05) ◽  
pp. 9386-9393
Author(s):  
Jian Yang ◽  
Shuming Ma ◽  
Dongdong Zhang ◽  
ShuangZhi Wu ◽  
Zhoujun Li ◽  
...  

Language model pre-training has achieved success in many natural language processing tasks. Existing methods for cross-lingual pre-training adopt Translation Language Model to predict masked words with the concatenation of the source sentence and its target equivalent. In this work, we introduce a novel cross-lingual pre-training method, called Alternating Language Modeling (ALM). It code-switches sentences of different languages rather than simple concatenation, hoping to capture the rich cross-lingual context of words and phrases. More specifically, we randomly substitute source phrases with target translations to create code-switched sentences. Then, we use these code-switched data to train ALM model to learn to predict words of different languages. We evaluate our pre-training ALM on the downstream tasks of machine translation and cross-lingual classification. Experiments show that ALM can outperform the previous pre-training methods on three benchmarks.1


2020 ◽  
Vol 34 (05) ◽  
pp. 7456-7463 ◽  
Author(s):  
Zied Bouraoui ◽  
Jose Camacho-Collados ◽  
Steven Schockaert

One of the most remarkable properties of word embeddings is the fact that they capture certain types of semantic and syntactic relationships. Recently, pre-trained language models such as BERT have achieved groundbreaking results across a wide range of Natural Language Processing tasks. However, it is unclear to what extent such models capture relational knowledge beyond what is already captured by standard word embeddings. To explore this question, we propose a methodology for distilling relational knowledge from a pre-trained language model. Starting from a few seed instances of a given relation, we first use a large text corpus to find sentences that are likely to express this relation. We then use a subset of these extracted sentences as templates. Finally, we fine-tune a language model to predict whether a given word pair is likely to be an instance of some relation, when given an instantiated template for that relation as input.


2021 ◽  
Vol 10 (5) ◽  
pp. 9-16
Author(s):  
Aditya Mandke ◽  
Onkar Litake ◽  
Dipali Kadam

With the recent developments in the field of Natural Language Processing, there has been a rise in the use of different architectures for Neural Machine Translation. Transformer architectures are used to achieve state-of-the-art accuracy, but they are very computationally expensive to train. Everyone cannot have such setups consisting of high-end GPUs and other resources. We train our models on low computational resources and investigate the results. As expected, transformers outperformed other architectures, but there were some surprising results. Transformers consisting of more encoders and decoders took more time to train but had fewer BLEU scores. LSTM performed well in the experiment and took comparatively less time to train than transformers, making it suitable to use in situations having time constraints.


2021 ◽  
Author(s):  
Tong Guo

Recently, the development of pre-trained language models has brought natural language processing (NLP) tasks to the new state-of-the-art. In this paper we explore the efficiency of various pre-trained language models. We pre-train a list of transformer-based models with the same amount of text and the same training steps. The experimental results shows that the most improvement upon the origin BERT is adding the RNN-layer to capture more contextual information for the transformer-encoder layers.


Author(s):  
Zakaria El Maazouzi ◽  
Badr Eddine EL Mohajir ◽  
Mohammed Al Achhab

Achieving high accuracy in automatic translation tasks has been one of the challenging goals for researchers in the area of machine translation since decades. Thus, the eagerness of exploring new possible ways to improve machine translation was always the matter for researchers in the field. Automatic translation as a key application in the natural language processing domain has developed many approaches, namely statistical machine translation and recently neural machine translation that improved largely the translation quality especially for Latin languages. They have even made it possible for the translation of some language pairs to approach human translation quality. In this paper, we present a survey of the state of the art of statistical translation, where we describe the different existing methodologies, and we overview the recent research studies while pointing out the main strengths and limitations of the different approaches.  


2021 ◽  
Vol 22 (S1) ◽  
Author(s):  
Mayla R. Boguslav ◽  
Negacy D. Hailu ◽  
Michael Bada ◽  
William A. Baumgartner ◽  
Lawrence E. Hunter

Abstract Background Automated assignment of specific ontology concepts to mentions in text is a critical task in biomedical natural language processing, and the subject of many open shared tasks. Although the current state of the art involves the use of neural network language models as a post-processing step, the very large number of ontology classes to be recognized and the limited amount of gold-standard training data has impeded the creation of end-to-end systems based entirely on machine learning. Recently, Hailu et al. recast the concept recognition problem as a type of machine translation and demonstrated that sequence-to-sequence machine learning models have the potential to outperform multi-class classification approaches. Methods We systematically characterize the factors that contribute to the accuracy and efficiency of several approaches to sequence-to-sequence machine learning through extensive studies of alternative methods and hyperparameter selections. We not only identify the best-performing systems and parameters across a wide variety of ontologies but also provide insights into the widely varying resource requirements and hyperparameter robustness of alternative approaches. Analysis of the strengths and weaknesses of such systems suggest promising avenues for future improvements as well as design choices that can increase computational efficiency with small costs in performance. Results Bidirectional encoder representations from transformers for biomedical text mining (BioBERT) for span detection along with the open-source toolkit for neural machine translation (OpenNMT) for concept normalization achieve state-of-the-art performance for most ontologies annotated in the CRAFT Corpus. This approach uses substantially fewer computational resources, including hardware, memory, and time than several alternative approaches. Conclusions Machine translation is a promising avenue for fully machine-learning-based concept recognition that achieves state-of-the-art results on the CRAFT Corpus, evaluated via a direct comparison to previous results from the 2019 CRAFT shared task. Experiments illuminating the reasons for the surprisingly good performance of sequence-to-sequence methods targeting ontology identifiers suggest that further progress may be possible by mapping to alternative target concept representations. All code and models can be found at: https://github.com/UCDenver-ccp/Concept-Recognition-as-Translation.


Sign in / Sign up

Export Citation Format

Share Document