Pulp and paper industry wastewater treatment: use of microbes and their enzymes

2020 ◽  
Vol 5 (10) ◽  
Author(s):  
Chhotu Ram ◽  
Pushpa Rani ◽  
Kibrom Alebel Gebru ◽  
Mebrhit G Mariam Abrha

AbstractPulp and paper industry is coming under one of the most water polluting industries, and generated wastewater is highly toxic in nature. The paper mill requires huge quantity (~50–60 m3 of water to produce one ton of paper) of water, and accordingly huge quantity of chemical contaminated wastewater is discharged. The paper mill effluents have identified 240–250 chemicals in different stages of paper making. Various chemical constituents such as high chemical oxygen demand, biochemical oxygen demand, AOX, chlorinated compounds, color, suspended materials, lignin and their derivatives are released in the wastewater. The present review study is focused on the paper mill processes, wastewater generation and its effective treatment by microorganisms. The biological treatment has been identified as cost-effective and eco-friendly methods for the degradation of xenobiotic compounds for paper mill wastewater. Various studies have been performed so far to investigate the complex nature of wastewater by the application of bacteria, fungi and their enzymes at industrial scale. Therefore, the article discussed the importance of biological method as an effective technique for the degradation of paper mill wastewater.

2014 ◽  
Vol 33 (1) ◽  
Author(s):  
Konstantin Bogolitsyn ◽  
Maria Gusakova ◽  
Nina Samsonova ◽  
Natalia Selivanova ◽  
Alexsandra Pochtovalova

AbstractThe first part of this investigation studied complex nature of chemical oxygen demand (COD ) parameter on local and overall effluents, which were obtained from two pulp and paper mills, located in the Northwest region of Russia. Contribution of individual compounds and fractions of matters having different chemical nature to COD for these effluents was established. The second part of this study shows that, qualitative and quantitative characteristics of priority pollutants and their contribution to COD for different pulp and paper mills are not the same, though these mills use similar technologies and produce similar products.


2010 ◽  
Vol 62 (7) ◽  
pp. 1676-1681 ◽  
Author(s):  
S. Gupta ◽  
S. K. Chakrabarti ◽  
S. Singh

Aerobic biological treatment with activated sludge is the predominant process all over the world for treatment of pulp and paper industry wastewater. 50–70% of the biodegradable organic material is oxidized to CO2 and the rest is converted to bacterial biomass, typically termed as excess sludge or waste activated sludge (WAS). Handling and disposal of WAS in general and in particular from the pulp and paper industry face different processing difficulties, regulatory stringency due to organochlorine contamination and reluctance of people for reuse. With an objective of reducing the net disposable biomass, ozonation of WAS from a pulp and paper mill and from a laboratory scale batch activated sludge process operated with the wastewater and bacterial seed of the same pulp and paper mill have been carried out. With the mill sludge having predominant filamentous organisms 18% MLSS was reduced at an ozone dosage of 55 mg O3/g dry MLSS solid (DS) resulting in 2.5 times COD increase. With the laboratory sludge which is well structured and flocculating, only 6% MLSS was reduced at an ozone dosage of 55 mg O3/g DS. Ozonation mineralizes 26% and 20% AOX compounds embedded in the secondary sludge in the mill and laboratory sludge respectively at an ozone dosage of 55 mg O3/g DS. During ozonation, absorbed/adsorbed lignin on biomass was released which resulted in increased colour concentration. Ozonation can be a potential oxidative pretreatment process for reducing the WAS and paving the way for cost effective overall treatment of WAS.


1985 ◽  
Vol 17 (1) ◽  
pp. 223-230 ◽  
Author(s):  
P K Latola

A wastewater from an integrated paper mill with a COD of 1200 mg/dm3 was anaerobically treated in a multi-stage reactor. The BOD7 removal efficiencies of 60-75 % were achieved at maximal loading rates of 5-6 kg COD/m3d and HRT of 4-6 hours due to the granular sludge. Industrial sulphite evaporator condensates from Ca- and Na-processes were treated in anaerobic filters containing light gravel, plastic foam and power plant slag as filter media. The BOD7 removals of 78 % on average were achieved at loading rates of 1.8-3.3 kg COD/m3d with Ca-process evaporator condensates and 80 % BOD7 removals were achieved with Na-process condensates at loading rates of 3.5-4.1 kg COD/m3d.


2019 ◽  
Vol 98 (12) ◽  
pp. 1392-1401
Author(s):  
V. V. Yurchenko ◽  
Faina I. Ingel ◽  
N. A. Urtseva ◽  
E. K. Krivtsova ◽  
L. V. Akhaltseva

Introduction. Analysis of literature has shown genotoxicants (mutagens and carcinogens) to be present in the atmospheric emissions of pulp and paper industry (PPI). Moreover, among PPI workers from different countries, there was identified an additional risk of cancer, which suggests its high probability among residents of the cities where the PPI is located. The recognized index of genotoxic effects is an increased level of genome instability, which is determined, in particular, in the micronucleus test. The scope of the study - the comparative analysis of the effects of genomic instability in the two tissues - blood lymphocytes cultured with Cytochalasin B, and buccal epithelial cells in the second grade school children (8-9 years old, boys and girls), whose schools were located at different distances from the pulp and paper mill. Material and methods. The study was carried out in the city of Koryazhma, the Arkhangelsk Region (42000 citizens), where the pulp and paper plant as the city-forming industry was located. For the analysis, we subdivided the territories on which the schools were located, into 3 groups according to their distance from the pulp and paper mill. The effects of genomic instability were determined by cytome analysis in the micronucleus test. Results. Cytome analysis of cultivated lymphocytes demonstrated that levels of genome instability indices (including cell frequencies with micronuclei and nucleoplasm bridges, apoptosis, as well as changes in the spectrum of cell populations) to decrease along with the rising the distance between the pulp and paper mill and schools where the children go. In buccal epithelial cells, the manifestations of genomic instability effects were less systematic, which did not allow making a definitive conclusion. At the same time, in both tests, gender differences in the results of cytome analysis were revealed (for example, the alteration of frequency of lymphocytes with genetic damage dependence on the distance between schools and the PPI was more pronounced among boys). Conclusion. According to the results of this study and taking into consideration the data of literature, we hypothesized that the discovering of gender dimorphism in the effects of genome instability may indicate the presence of toxic and/or genotoxic compounds in an environment.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (3) ◽  
pp. 205-213 ◽  
Author(s):  
J. Peter Gorog ◽  
W. Ray Leary

Ring formation occurs in the rotary kilns used by the pulp and paper industry to regenerate the lime needed to produce white liquor. The main rings are: burning zone rings, mid-kiln rings, dust rings and/or mud balls, and mud rings. While the exact mechanisms of ring formation are not completely understood, frequent changes in the production rate and the mud solids, high soda content in the mud, and high levels of dust are believed to play a major role in ring formation. The presence of rings can restrict the movement of material through the kiln. If undetected, this can result in overheating of the refractory lining. In the worst case, the presence of rings can lead to unscheduled downtime to clean out the ring and replace damaged refractory bricks. Depending on the severity, the cost of repairs and lost production can be in excess of US$3 million for a single event. Even if the root cause of ring formation is known, from a practical standpoint, it can be difficult to eliminate rings. In mills where ring formation is a recurring problem, mechanical ring removal systems should be considered. This paper describes the use of ring removal systems as a cost effective way to mitigate the problems associated with ring formation.


1994 ◽  
Vol 29 (5-6) ◽  
pp. 313-328 ◽  
Author(s):  
Sakari Halttunen

High suspended solids concentrations are typical for pulp and paper industry treated effluents. A new clarifier model was developed to find the reasons for this problem. The model clarifier is divided into four different zones: inlet, settling, thickening and separation. In the inlet zone sludge is transported by water flow and neither thickening nor settling will happen. When water velocity decreases the main part of the sludge will settle until it reaches the thickening zone. Thickening will continue until the sludge is pumped away from the clarifier. Concentration increase depends on sludge concentration, time and specific thickening coefficient. The minor part, which is specific to the sludge, enters the separation zone and will either settle in the thickening zone or stay in the effluent. In intensive field studies on 12 different activated sludge processes sludge volume in the clarifier, effluent suspended solids concentrations and sludge settling qualities were examined. Modelled sludge blanket volumes were verified with blanket measurements. Modelled effluent suspended solids were also verified by concentration measurements. Sludge thickening characteristics can be estimated by DSVI. From the data collected two empirical relationships were noticed between sludge settling properties and process operation. Solids concentration in clarified water depends on settling number, which is the mean number of sludge settling during its residence time in the process (sludge age). Sludge settling properties seem to depend on collision load, which is defined as COD-load divided by return sludge biomass flow.


2007 ◽  
Vol 55 (6) ◽  
pp. 117-123 ◽  
Author(s):  
C.R. Oliveira ◽  
C.M. Silva ◽  
A.F. Milanez

In the pulp and paper industry, the water use minimization is a constant target. One way to reduce water use is to recycle the effluent in a closed-cycle concept. In paper mills, the main source of liquid effluent is the so-called whitewater, which is the excess water, originated from pulp stock dewatering and other fibre contaminated water. This research studied the reuse of paper mill whitewater after membrane ultrafiltration (UF) in the paper machine and in the pulp bleach plant of an integrated mill. Contaminant removal and flux behaviour of the UF system were evaluated. The treatment by ultrafiltration was technically feasible and the treated whitewater had good potential to be reused in some processes in the paper machine. The reuse of ultrafiltered whitewater in the bleaching plant was not recommended because of the high level of soluble calcium present in this stream. Therefore, a combined treatment of the whitewater using the principle of precipitation and ultrafiltration was proposed showing good results and enabling the use of the treated whitewater in the bleach plant.


1991 ◽  
Vol 24 (3-4) ◽  
pp. 411-415 ◽  
Author(s):  
J. Wartiovaara ◽  
P. Heinonen

During recent years the BOD-loading of pulp and paper mill wastewaters has decreased dramatically, due to more effective circulation of water in the processes, and the new activated sludge biological treatment plants. This traditional threat to the environment has been forgotten by the scientists who nowadays are more interested in the role of chlorine compounds discharged from bleaching processes. However, eutrophication due to nutrient loading is still present in many recipients of pulp and paper industry. The BOD-reduction has often been carried out on the cost of adding nutrients, pnosphorus and nitrogen to the purification processes. The biological treatment has also decreased the inhibitive effect of wastewater on the biological production of the recipient water body. Therefore, the eutrophication arises immediatly. The authors worry about the research of nutrients; loadings, development trends and eutrophication effects.


Sign in / Sign up

Export Citation Format

Share Document