scholarly journals Kathodischer Korrosionsschutz für Stahlbetontragwerke unter Verwendung eines neuen leitfähigen Anstrichsystems / Cathodic Corrosion Protection of Steel Reinforced Concrete Structures with a New Conductive Composite Paint System

2000 ◽  
Vol 6 (6) ◽  
pp. 597-618
Author(s):  
W. Schwarz

Abstract Corrosion of steel in concrete is one of the critical problems in civil engineering with regard to the durability of reinforced concrete structures. Cathodic protection (CP) of the steel rebars in concrete structures evolved during the past 25 years as a reliable method to extend the lifetime of reinforced concrete structures. During the CP operation, proportional to the applied protection current, acids are generated at the anode/concrete interface. This effect limits durability and performance of various CP-systems. This contribution describes a newly developed conductive composite paint for use as anode material, characterized by high durability at high current densities and easy applicability, and its practical application for the corrosion protection of a parking deck in Oslo.

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Alexander Bulkov ◽  
Michail Baev ◽  
Igor Ovchinnikov

The influence of reinforcing steel corrosion on the durability of reinforced concrete structures of transport structures and the degree of knowledge of this problem is considered. It is specified that the protection of reinforcing steel from corrosion is not able to completely replace the correct design and use of high-strength concrete. But it is able to extend the life of reinforced concrete structures. It is noted that corrosion of the reinforcement leads to a decrease in the structural strength due to wear and tear and by a third of the period of operation of reinforced concrete structures, as a result of which transport structures collapse. As an example of the detrimental effect of corrosion of reinforcing steel on the durability of transport structures, examples of accidents of bridges and overpasses caused by this type of corrosion are given. As a result, a conclusion is drawn on the advisability of ensuring a sufficient level of corrosion protection of reinforcing steel to achieve the required durability of reinforced concrete structures of transport structures. The types and causes of corrosion processes in reinforcing steel reinforced concrete structures are described. The compositions and technologies of anticorrosive protection are examined and analyzed. Comparison of the compositions of anticorrosive protection of reinforced concrete structures is carried out according to the following criteria: consumption, density, viability, curing temperature and the number of components of the composition. A comparison of anti-corrosion protection technologies is carried out on the basis of the following indicators: line dimensions, productivity and consumption of energy resources. A comparison is also made of the cost of using various anti-corrosion protection technologies. Based on the data obtained, the advantages and disadvantages of the considered compositions and technologies of corrosion protection are determined. As a result, the most effective and technologically advanced method of corrosion protection of steel reinforcement of reinforced concrete structures of transport structures is selected.


Author(s):  
Md Daniyal ◽  
Sabih Akhtar

The steel reinforced concrete structures perform well in various environmental conditions, but structures may undergo premature damage in aggressive environments such as marine or acidic, primarily due to steel corrosion, and substantial reduction in service life occurs. This also causes huge economical loss and create safety and environmental problems. The repair and maintenance of steel reinforced concrete structures for their safety needs effective monitoring and inspection systems for evaluating the corrosion condition of steel. Since the corrosion of steel reinforcement occurs through electrochemical reactions, electrochemical methods are suitable to study the corrosion processes. In this chapter, some commonly used electrochemical techniques have been comprehensively explained. In addition, there is a critical requirement to develop effective and long-lasting techniques to control the corrosion of steel. Hence, some of the commonly used corrosion control methods have been comprehensively described in this chapter.


2021 ◽  
Author(s):  
Sergey Leonovich ◽  
Evgeniy Shalyy ◽  
Elena Polonina ◽  
Elena Sadovskaya ◽  
Lev Kim ◽  
...  

Section I of the monograph is devoted to an urgent problem - forecasting the durability of port reinforced concrete structures, the destruction of which is associated with corrosion of steel reinforcement caused by chloride aggression and carbonation of concrete. The analysis of models for calculating the service life of structures and experimental data is carried out, the life cycles for the main degradation processes in concrete and reinforcement, the periods of initiation and propagation of corrosion are considered, the influence of environmental factors (temperature, humidity) and the quality of concrete (In/C, cement consumption, diffusion coefficient) on the kinetics of chloride penetration and the movement of the carbonation front is taken into account. Probabilistic models of basic variables are considered, the limiting states of port reinforced concrete structures for the durability of reinforced concrete structures based on the reliability coefficient for service life are formulated. Sections II and III describe modern methods of restoration and restoration of reinforced concrete port structures subjected to corrosion destruction using nanofibrobeton. The concept of multilevel reinforcement has been implemented. Methods of experimental fracture mechanics were used to evaluate the joint work of exploited concrete and reinforcement nanofibre concrete. It is intended for scientific and engineering staff of universities, research and design organizations.


2018 ◽  
Vol 7 (3.2) ◽  
pp. 370 ◽  
Author(s):  
Oleksandr Semko ◽  
Viktor Dariienko ◽  
Vitaliy Sirobaba

The calculation, modeling and experimental research of steel-concrete tubular elements made of thin-walled galvanized sheet metal and lightweight concrete have been carried out. The proposed type of structures can be used as a separate structure in the form of a column or a pillar, and one of the types of the reinforcement of a certain light structure. The basic technological and constructive requirements for manufacturing and further exploitation of structures are given. For determination of actual work’s indexes of constructions experimental research of standards are undertaken, and recommendations on adjustment of well-known calculation formulas of close constructions as for structural parameters are given. The design (modeling) was performed in MSC / Nastran software. An analysis of the proposed structures use is carried out with the corresponding conclusions. 


Author(s):  
Mohamed A. Ismail ◽  
Han-Seung Lee ◽  
Mohd Warid Hussin

Corrosion of steel reinforcement embedded in concrete is one of the main causes of degradation of reinforced concrete structures. Degradation occurs in reinforced concrete structures from corrosion caused by the Chloride ingress into concrete. That degradation has a severe impact on the structure in terms of maintenance and rehabilitation costs. Therefore, early detection of reinforcement corrosion is important for efficient maintenance, repair and planning. Meanwhile, the evaluation of the corrosion of reinforcement by non-destructive measurements have been used a lot. In particular CM-II (corrosion meter) is used to measure the polarization resistance, but has some disadvantages. Embedded mini-sensor has been developed in order to overcome these disadvantages. In this study, measurement of corrosion by using the mini-sensor is compared with the measured results by CM-II to verify the validity of the newly developed mini senor. Results show that there are agreement in trends of the parameters measured and as such the developed mini sensor has a promising start to be used.


Author(s):  
Сергей Леонович ◽  
Sergey Leonovich ◽  
Валентин Доркин ◽  
Valentin Dorkin ◽  
Оксана Чернякевич ◽  
...  

The monograph is devoted to the prediction of the longevity of reinforced concrete structures, the destruction of which is associated with corrosion of steel reinforcement caused by chloride aggression or concrete carbonation. On the basis of a comprehensive analysis of models for calculating the service life of structures and experimental data, preference is given to the mathematical model Dura Crete. Life cycles for the main degradation processes in concrete and reinforcement, periods of initiation and propagation of corrosion are considered. Particular attention is paid to the influence of environmental factors and the quality of concrete on the kinetics of chloride penetration and movement of the carbonization front. Formulated limit state design reinforced concrete durability in chloride attacks and carbonation. The basic provisions of the method of calculating the durability of reinforced concrete structures, based on the use of the reliability coefficient for the service life. The practical assessment of service life of reinforced concrete elements taking into account stochastic processes in concrete and reinforcement is made. Verification of the model reliability is performed. For all those interested in the issues of building materials and processes occurring in them.


Sign in / Sign up

Export Citation Format

Share Document