scholarly journals Immersed boundary method for multiphase transport phenomena

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Wei Xiao ◽  
Hancong Zhang ◽  
Kun Luo ◽  
Chaoli Mao ◽  
Jianren Fan

AbstractMultiphase flows with momentum, heat, and mass transfer exist widely in a variety of industrial applications. With the rapid development of numerical algorithms and computer capacity, advanced numerical simulation has become a promising tool in investigating multiphase transport problems. Immersed boundary (IB) method has recently emerged as such a popular interface capturing method for efficient simulations of multiphase flows, and significant achievements have been obtained. In this review, we attempt to give an overview of recent progresses on IB method for multiphase transport phenomena. Firstly, the governing equations, the basic ideas, and different boundary conditions for the IB methods are introduced. This is followed by numerical strategies, from which the IB methods are classified into two types, namely the artificial boundary method and the authentic boundary method. Discussions on the implementation of various boundary conditions at the interphase surface with momentum, heat, and mass transfer for different IB methods are then presented, together with a summary. Then, the state-of-the-art applications of IB methods to multiphase flows, including the isothermal flows, the heat transfer flows, and the mass transfer problems are outlined, with particular emphasis on the latter two topics. Finally, the conclusions and future challenges are identified.

Author(s):  
Виктор Григорьевич Чеверев ◽  
Евгений Викторович Сафронов ◽  
Алексей Александрович Коротков ◽  
Александр Сергеевич Чернятин

Существуют два основных подхода решения задачи тепломассопереноса при численном моделировании промерзания грунтов: 1) решение методом конечных разностей с учетом граничных условий (границей, например, является фронт промерзания); 2) решение методом конечных элементов без учета границ модели. Оба подхода имеют существенные недостатки, что оставляет проблему решения задачи для численной модели промерзания грунтов острой и актуальной. В данной работе представлена физическая постановка промерзания, которая позволяет создать численную модель, базирующуюся на решении методом конечных элементов, но при этом отражающую ход фронта промерзания - то есть модель, в которой объединены оба подхода к решению задачи промерзания грунтов. Для подтверждения корректности модели был проделан ряд экспериментов по физическому моделированию промерзания модельного грунта и выполнен сравнительный анализ полученных экспериментальных данных и результатов расчетов на базе представленной численной модели с такими же граничными условиями, как в экспериментах. There are two basic approaches to solving the problem of heat and mass transfer in the numerical modeling of soil freezing: 1) using the finite difference method taking into account boundary conditions (the boundary, for example, is the freezing front); 2) using the finite element method without consideration of model boundaries. Both approaches have significant drawbacks, which leaves the issue of solving the problem for the numerical model of soil freezing acute and up-to-date. This article provides the physical setting of freezing that allows us to create a numerical model based on the solution by the finite element method, but at the same time reflecting the route of the freezing front, i.e. the model that combines both approaches to solving the problem of soil freezing. In order to confirm the correctness of the model, a number of experiments on physical modeling of model soil freezing have been performed, and a comparative analysis of the experimental data obtained and the calculation results based on the provided numerical model with the same boundary conditions as in the experiments was performed.


Sign in / Sign up

Export Citation Format

Share Document