MOMENTUM, MASS AND HEAT TRANSFER IN SINGLE-PHASE TURBULENT FLOW

2002 ◽  
Vol 18 (2-3) ◽  
pp. 83-293 ◽  
Author(s):  
S. S. Thakre ◽  
J. B. Joshi
2013 ◽  
Vol 135 (7) ◽  
Author(s):  
Mehmed Rafet Özdemir ◽  
Ali Koşar

The pressure drop and heat transfer due to the flow of de-ionized water at high mass fluxes in microtubes of ∼ 254 μm and ∼ 685 μm inner diameters is investigated in the laminar, transition and the turbulent flow regimes. The flow is hydrodynamically fully developed and thermally developing. The experimental friction factors and heat transfer coefficients are respectively predicted to within ±20% and ±30% by existing open literature correlations. Higher single phase heat transfer coefficients were obtained with increasing mass fluxes, which is motivating to operate at high mass fluxes and under thermally developing flow conditions. The transition to turbulent flow and friction factors for both laminar and turbulent conditions were found to be in agreement with existing theory. A reasonable agreement was present between experimental results and theoretical predictions recommended for convective heat transfer in thermally developing flows.


Author(s):  
Gian Piero Celata

The objective of the present paper is to provide a general overview of the research carried out so far in single-phase heat transfer and flow in capillary (micro) pipes. Laminar flow and laminar-to-turbulent flow transition are analyzed in detail in order to clarify the discrepancies among the results obtained by different researchers. Experiments performed in the ENEA laboratory indicate that in laminar flow regime the friction factor is in good agreement with the Hagen-Poiseuille theory for Reynolds number below 600–800. For higher values of Reynolds number, experimental data depart from the Hagen-Poiseuille law to the side of higher f values. The transition from laminar-to-turbulent flow occurs for Reynolds number in the range 1800–2500. Heat transfer experiments show that heat transfer correlations in laminar and turbulent regimes, developed for conventional (macro) tubes, are not properly adequate for heat transfer rate prediction in microtubes.


2012 ◽  
Vol 20 (04) ◽  
pp. 1250022 ◽  
Author(s):  
NORIHIRO INOUE ◽  
JUNYA ICHINOSE

An experimental study on pressure drop and heat transfer in single-phase was carried out using 10 types of internally helical-grooved and smooth small-diameter tubes with an outside diameter of 4 mm. The results are listed below: (1) In the turbulent flow region, fin height had the greatest effect, helix angle had only a minor effect, and the number of grooves had almost no effect upon the pressure drop versus the mass flow rate of the 4-mm grooved small-diameter tubes. In the laminar flow region, except for fin height, the shapes of the internal grooves had scarcely any effect upon pressure drop. (2) In the turbulent flow region, the heat transfer coefficients of the 4-mm grooved small-diameter tubes were greatly affected by fin height. The heat transfer coefficients became the maximum when a helix angle was near 15°, and there is a different tendency in the experiments of the pressure drop. On the other hand, there is almost no effect of the number of grooves. In the laminar flow region, there were no large differences in the heat transfer coefficients between the internally helical-grooved tubes and smooth small-diameter tube. (3) New empirical correlations for the friction factor and heat transfer coefficient in the laminar and turbulent flow regions were developed based on the experimental values. (4) The performance assessment in consideration of both heat transfer and pressure drop was indicated by using Colburn's analogy.


2010 ◽  
Author(s):  
H. K. Tam ◽  
L. M. Tam ◽  
A. J. Ghajar ◽  
C. U. Lei ◽  
Jane W. Z. Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document