The blood–brain barrier and its regulation by NF-κB

e-Neuroforum ◽  
2016 ◽  
Vol 22 (2) ◽  
Author(s):  
J. Wenzel ◽  
M. Schwaninger

AbstractThe brain is protected by a tight barrier between the blood and parenchyma. This so-called blood-brain barrier protects the brain from invading pathogens, infiltrating immune cells, and the extravasation of serum proteins. Beside pericytes and astrocytes mainly endothelial cells form this barrier.Inflammation leads to an increase in the permeability of the blood-brain barrier. NF-κB is activated during inflammation and is a key regulator of inflammatory processes. In brain endothelial cells NF-κB protects the blood-brain barrier. Loss of the NF-κB activating protein NEMO in brain endothelial cells leads to endothelial cell death, increased permeability, and epilepsy inmice as well as in humans with the hereditary disease incontinentia pigmenti. Therefore, inflammatory mediators are able to disturb but also to protect the blood-brain barrier.

2021 ◽  
Vol 218 (3) ◽  
Author(s):  
Yvonne Adams ◽  
Rebecca W. Olsen ◽  
Anja Bengtsson ◽  
Nanna Dalgaard ◽  
Mykola Zdioruk ◽  
...  

Cerebral malaria (CM) is caused by the binding of Plasmodium falciparum–infected erythrocytes (IEs) to the brain microvasculature, leading to inflammation, vessel occlusion, and cerebral swelling. We have previously linked dual intercellular adhesion molecule-1 (ICAM-1)– and endothelial protein C receptor (EPCR)–binding P. falciparum parasites to these symptoms, but the mechanism driving the pathogenesis has not been identified. Here, we used a 3D spheroid model of the blood–brain barrier (BBB) to determine unexpected new features of IEs expressing the dual-receptor binding PfEMP1 parasite proteins. Analysis of multiple parasite lines shows that IEs are taken up by brain endothelial cells in an ICAM-1–dependent manner, resulting in breakdown of the BBB and swelling of the endothelial cells. Via ex vivo analysis of postmortem tissue samples from CM patients, we confirmed the presence of parasites within brain endothelial cells. Importantly, this discovery points to parasite ingress into the brain endothelium as a contributing factor to the pathology of human CM.


2018 ◽  
Vol 315 (4) ◽  
pp. E531-E542 ◽  
Author(s):  
Maria Hersom ◽  
Hans C. Helms ◽  
Christoffer Schmalz ◽  
Thomas Å. Pedersen ◽  
Stephen T. Buckley ◽  
...  

Insulin and its receptor are known to be present and functional in the brain. Insulin cerebrospinal fluid concentrations have been shown to correlate with plasma levels of insulin in a nonlinear fashion, indicative of a saturable transport pathway from the blood to the brain interstitial fluid. The aim of the present study was to investigate whether insulin was transported across brain endothelial cells in vitro via an insulin receptor-dependent pathway. The study showed that the insulin receptor was expressed at both the mRNA and protein levels in bovine brain endothelial cells. Luminally applied radiolabeled insulin showed insulin receptor-mediated binding to the endothelial cells. This caused a dose-dependent increase in Akt-phosphorylation, which was inhibited by coapplication of an insulin receptor inhibitor, s961, demonstrating activation of insulin receptor signaling pathways. Transport of insulin across the blood-brain barrier in vitro was low and comparable to that of a similarly sized paracellular marker. Furthermore, insulin transport was not inhibited by coapplication of an excess of unlabeled insulin or an insulin receptor inhibitor. The insulin transport and uptake studies were repeated in mouse brain endothelial cells demonstrating similar results. Although it cannot be ruled out that culture-induced changes in the cell model could have impaired a potential insulin transport mechanism, these in vitro data indicate that peripheral insulin must reach the brain parenchyma through alternative pathways rather than crossing the blood-brain barrier via receptor mediated transcytosis.


Author(s):  
Maarja Andaloussi Mäe ◽  
Liqun He ◽  
Sofia Nordling ◽  
Elisa Vazquez-Liebanas ◽  
Khayrun Nahar ◽  
...  

Rationale: Pericytes are capillary mural cells playing a role in stabilizing newly formed blood vessels during development and tissue repair. Loss of pericytes has been described in several brain disorders, and genetically induced pericyte deficiency in the brain leads to increased macromolecular leakage across the blood-brain barrier (BBB). However, the molecular details of the endothelial response to pericyte deficiency remain elusive. Objective: To map the transcriptional changes in brain endothelial cells resulting from lack of pericyte contact at single-cell level, and to correlate them with regional heterogeneities in BBB function and vascular phenotype. Methods and Results: We reveal transcriptional, morphological and functional consequences of pericyte absence for brain endothelial cells using a combination of methodologies, including single-cell RNA sequencing, tracer analyses and immunofluorescent detection of protein expression in pericyte-deficient adult Pdgfbret/ret mice. We find that endothelial cells without pericyte contact retain a general BBB-specific gene expression profile, however, they acquire a venous-shifted molecular pattern and become transformed regarding the expression of numerous growth factors and regulatory proteins. Adult Pdgfbret/ret brains display ongoing angiogenic sprouting without concomitant cell proliferation providing unique insights into the endothelial tip cell transcriptome. We also reveal heterogeneous modes of pericyte-deficient BBB impairment, where hotspot leakage sites display arteriolar-shifted identity and pinpoint putative BBB regulators. By testing the causal involvement of some of these using reverse genetics, we uncover a reinforcing role for angiopoietin 2 at the BBB. Conclusions: By elucidating the complexity of endothelial response to pericyte deficiency at cellular resolution, our study provides insight into the importance of brain pericytes for endothelial arterio-venous zonation, angiogenic quiescence and a limited set of BBB functions. The BBB-reinforcing role of ANGPT2 is paradoxical given its wider role as TIE2 receptor antagonist and may suggest a unique and context-dependent function of ANGPT2 in the brain.


2019 ◽  
Vol 26 (1) ◽  
pp. 84-94 ◽  
Author(s):  
Wenjing Wang ◽  
Jiandong Sun ◽  
Nan Wang ◽  
Zhixiao Sun ◽  
Qiyun Ma ◽  
...  

Abstract Enterovirus A71 (EV-A71) is the major cause of severe hand-foot-and-mouth diseases (HFMD), especially encephalitis and other nervous system diseases. EV-A71 capsid protein VP1 mediates virus attachment and is the important virulence factor in the EV-A71pathogenesis. In this study, we explored the roles of VP1 in the permeability of blood–brain barrier (BBB). Sera albumin, Evans blue, and dextran leaked into brain parenchyma of the 1-week-old C57BL/6J mice intracranially injected with VP1 recombinant protein. VP1 also increased the permeability of the brain endothelial cells monolayer, an in vitro BBB model. Tight junction protein claudin-5 was reduced in the brain tissues or brain endothelial cells treated with VP1. In contrast, VP1 increased the expression of virus receptor vimentin, which could be blocked with VP1 neutralization antibody. Vimentin expression in the VP1-treated brain endothelial cells was regulated by TGF-β/Smad-3 and NF-κB signal pathways. Moreover, vimentin over-expression was accompanied with compromised BBB. From these studies, we conclude that EV-A71 virus capsid protein VP1 disrupted BBB and increased virus receptor vimentin, which both may contribute to the virus entrance into brain and EV-A71 CNS infection.


2020 ◽  
Vol 117 (32) ◽  
pp. 19141-19150 ◽  
Author(s):  
Daniel Gonzalez-Carter ◽  
Xueying Liu ◽  
Theofilus A. Tockary ◽  
Anjaneyulu Dirisala ◽  
Kazuko Toh ◽  
...  

Current strategies to direct therapy-loaded nanoparticles to the brain rely on functionalizing nanoparticles with ligands which bind target proteins associated with the blood–brain barrier (BBB). However, such strategies have significant brain-specificity limitations, as target proteins are not exclusively expressed at the brain microvasculature. Therefore, novel strategies which exploit alternative characteristics of the BBB are required to overcome nonspecific nanoparticle targeting to the periphery, thereby increasing drug efficacy and reducing detrimental peripheral side effects. Here, we present a simple, yet counterintuitive, brain-targeting strategy which exploits the higher impermeability of the BBB to selectively label the brain endothelium. This is achieved by harnessing the lower endocytic rate of brain endothelial cells (a key feature of the high BBB impermeability) to promote selective retention of free, unconjugated protein-binding ligands on the surface of brain endothelial cells compared to peripheral endothelial cells. Nanoparticles capable of efficiently binding to the displayed ligands (i.e., labeled endothelium) are consequently targeted specifically to the brain microvasculature with minimal “off-target” accumulation in peripheral organs. This approach therefore revolutionizes brain-targeting strategies by implementing a two-step targeting method which exploits the physiology of the BBB to generate the required brain specificity for nanoparticle delivery, paving the way to overcome targeting limitations and achieve clinical translation of neurological therapies. In addition, this work demonstrates that protein targets for brain delivery may be identified based not on differential tissue expression, but on differential endocytic rates between the brain and periphery.


2007 ◽  
Vol 1159 ◽  
pp. 67-76 ◽  
Author(s):  
Joseph C. Lim ◽  
Adam J. Wolpaw ◽  
Maeve A. Caldwell ◽  
Stephen B. Hladky ◽  
Margery A. Barrand

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1484
Author(s):  
Daisuke Watanabe ◽  
Shinsuke Nakagawa ◽  
Yoichi Morofuji ◽  
Andrea E. Tóth ◽  
Monika Vastag ◽  
...  

Culture models of the blood-brain barrier (BBB) are important research tools. Their role in the preclinical phase of drug development to estimate the permeability for potential neuropharmaceuticals is especially relevant. Since species differences in BBB transport systems exist, primate models are considered as predictive for drug transport to brain in humans. Based on our previous expertise we have developed and characterized a non-human primate co-culture BBB model using primary cultures of monkey brain endothelial cells, rat brain pericytes, and rat astrocytes. Monkey brain endothelial cells in the presence of both pericytes and astrocytes (EPA model) expressed enhanced barrier properties and increased levels of tight junction proteins occludin, claudin-5, and ZO-1. Co-culture conditions also elevated the expression of key BBB influx and efflux transporters, including glucose transporter-1, MFSD2A, ABCB1, and ABCG2. The correlation between the endothelial permeability coefficients of 10 well known drugs was higher (R2 = 0.8788) when the monkey and rat BBB culture models were compared than when the monkey culture model was compared to mouse in vivo data (R2 = 0.6619), hinting at transporter differences. The applicability of the new non-human primate model in drug discovery has been proven in several studies.


1994 ◽  
Vol 107 (5) ◽  
pp. 1347-1357 ◽  
Author(s):  
H. Wolburg ◽  
J. Neuhaus ◽  
U. Kniesel ◽  
B. Krauss ◽  
E.M. Schmid ◽  
...  

Tight junctions between endothelial cells of brain capillaries are the most important structural elements of the blood-brain barrier. Cultured brain endothelial cells are known to loose tight junction-dependent blood-brain barrier characteristics such as macromolecular impermeability and high electrical resistance. We have directly analyzed the structure and function of tight junctions in primary cultures of bovine brain endothelial cells using quantitative freeze-fracture electron microscopy, and ion and inulin permeability. The complexity of tight junctions, defined as the number of branch points per unit length of tight junctional strands, decreased 5 hours after culture but thereafter remained almost constant. In contrast, the association of tight junction particles with the cytoplasmic leaflet of the endothelial membrane bilayer (P-face) decreased continuously with a major drop between 16 hours and 24 hours. The complexity of tight junctions could be increased by elevation of intracellular cAMP levels while phorbol esters had the opposite effect. On the other hand, the P-face association of tight junction particles was enhanced by elevation of cAMP levels and by coculture of endothelial cells with astrocytes or exposure to astrocyte-conditioned medium. The latter effect on P-face association was induced by astrocytes but not fibroblasts. Elevation of cAMP levels together with astrocyte-conditioned medium synergistically increased transendothelial electrical resistance and decreased inulin permeability of primary cultures, thus confirming the effects on tight junction structure and barrier function. P-face association of tight junction particles in brain endothelial cells may therefore be a critical feature of blood-brain barrier function that can be specifically modulated by astrocytes and cAMP levels. Our results suggest an important functional role for the cytoplasmic anchorage of tight junction particles for brain endothelial barrier function in particular and probably paracellular permeability in general.


Author(s):  
Lorena Gárate-Vélez ◽  
Claudia Escudero-Lourdes ◽  
Daniela Salado-Leza ◽  
Armando González-Sánchez ◽  
Ildemar Alvarado-Morales ◽  
...  

Background: Iron nanoparticles, mainly in magnetite phase (Fe3O4 NPs), are released to the environment in areas with high traffic density and braking frequency. Fe3O4 NPs were found in postmortem human brains and are assumed to get directly into the brain through the olfactory nerve. However, these pollution-derived NPs may also translocate from the lungs to the bloodstream and then, through the blood-brain barrier (BBB), into the brain inducing oxidative and inflammatory responses that contribute to neurodegeneration. Objective: To describe the interaction and toxicity of pollution-derived Fe3O4 NPs on primary rat brain microvascular endothelial cells (rBMECs), main constituents of in vitro BBB models. Methods: Synthetic bare Fe3O4 NPs that mimic the environmental ones (miFe3O4) were synthesized by co-precipitation and characterized using complementary techniques. The rBMECs were cultured in Transwell® plates. The NPs-cell interaction was evaluated through transmission electron microscopy and standard colorimetric in vitro assays. Results: The miFe3O4 NPs, with a mean diameter of 8.45 ± 0.14 nm, presented both magnetite and maghemite phases, and showed super-paramagnetic properties. Results suggest that miFe3O4 NPs are internalized by rBMECs through endocytosis and that they are able to cross the cells monolayer. The lowest miFe3O4 NPs concentration tested induced mid cytotoxicity in terms of 1) membrane integrity (LDH release) and 2) metabolic activity (MTS transformation). Conclusion: Pollution-derived Fe3O4 NPs may interact and cross the microvascular endothelial cells forming the BBB and cause biological damage.


2020 ◽  
Vol 21 (2) ◽  
pp. 591 ◽  
Author(s):  
Wolfgang Löscher ◽  
Alon Friedman

The blood-brain barrier (BBB) is a dynamic, highly selective barrier primarily formed by endothelial cells connected by tight junctions that separate the circulating blood from the brain extracellular fluid. The endothelial cells lining the brain microvessels are under the inductive influence of neighboring cell types, including astrocytes and pericytes. In addition to the anatomical characteristics of the BBB, various specific transport systems, enzymes and receptors regulate molecular and cellular traffic across the BBB. While the intact BBB prevents many macromolecules and immune cells from entering the brain, following epileptogenic brain insults the BBB changes its properties. Among BBB alterations, albumin extravasation and diapedesis of leucocytes from blood into brain parenchyma occur, inducing or contributing to epileptogenesis. Furthermore, seizures themselves may modulate BBB functions, permitting albumin extravasation, leading to activation of astrocytes and the innate immune system, and eventually modifications of neuronal networks. BBB alterations following seizures are not necessarily associated with enhanced drug penetration into the brain. Increased expression of multidrug efflux transporters such as P-glycoprotein likely act as a ‘second line defense’ mechanism to protect the brain from toxins. A better understanding of the complex alterations in BBB structure and function following seizures and in epilepsy may lead to novel therapeutic interventions allowing the prevention and treatment of epilepsy as well as other detrimental neuro-psychiatric sequelae of brain injury.


Sign in / Sign up

Export Citation Format

Share Document