scholarly journals A continuum damage model for fatigue life prediction of 2.5D woven composites

2021 ◽  
Vol 28 (1) ◽  
pp. 653-667
Author(s):  
Nan Wang ◽  
Weidong Wen ◽  
Haitao Cui

Abstract A new model based on continuum damage mechanics is proposed to predict the fatigue life of 2.5D woven composites. First, a full-cell model reflecting the real microstructure of 2.5D woven composites is established in ANSYS. Subsequently, three independent damage variables are defined in the framework of the composite micromechanics to establish the component constitutive relations associated with damage. The strain energy density release rate and damage evolution equations for the matrix, fiber in yarns, and matrix in yarns are derived. Finally, the proposed model is implemented for fatigue life prediction and damage evolution analysis of 2.5D woven composites at 20 and 180°C. The results show that the numerical results are in good agreement with the relevant experimental results.

2011 ◽  
Vol 21 (4) ◽  
pp. 599-620 ◽  
Author(s):  
Zhang Miao ◽  
Meng Qingchun ◽  
Hu Weiping ◽  
Zhang Xing

First of all, the boom–panel model is constructed to describe the anisotropic damage evolution of continuum volume element. The constitutive relation of continuum volume element is represented by damage extent of the booms and panels. Furthermore, based on irreversible thermodynamics, damage evolution equations of boom and panel are constructed. The fatigue life prediction method for smooth specimen under the repeated loading with constant strain amplitude is constructed. By the theory of conservative integral in damage mechanics, the fatigue life prediction method for notched specimen under the repeated loading with constant amplitude is obtained. Using these methods, the material parameters of LC4CS aluminum alloy in the damage evolution equation can be obtained by the mean values of experimental fatigue curves of standard specimens with KT = 1, K T = 3, and K T = 5. The computational results are in accordance with the experiment data.


2016 ◽  
Vol 2016 ◽  
pp. 1-26 ◽  
Author(s):  
E. Santecchia ◽  
A. M. S. Hamouda ◽  
F. Musharavati ◽  
E. Zalnezhad ◽  
M. Cabibbo ◽  
...  

Metallic materials are extensively used in engineering structures and fatigue failure is one of the most common failure modes of metal structures. Fatigue phenomena occur when a material is subjected to fluctuating stresses and strains, which lead to failure due to damage accumulation. Different methods, including the Palmgren-Miner linear damage rule- (LDR-) based, multiaxial and variable amplitude loading, stochastic-based, energy-based, and continuum damage mechanics methods, forecast fatigue life. This paper reviews fatigue life prediction techniques for metallic materials. An ideal fatigue life prediction model should include the main features of those already established methods, and its implementation in simulation systems could help engineers and scientists in different applications. In conclusion, LDR-based, multiaxial and variable amplitude loading, stochastic-based, continuum damage mechanics, and energy-based methods are easy, realistic, microstructure dependent, well timed, and damage connected, respectively, for the ideal prediction model.


2013 ◽  
Vol 787 ◽  
pp. 200-204
Author(s):  
Wen Jing Shi ◽  
Yong Bo Zhang ◽  
Wei Ping Hu

In this paper, a fatigue life prediction method for fiber reinforced polymer composite lamina is proposed. Based on two independent introduced damage variables, the damage degree of fiber and the damage degree of matrix, the issue of lamina fatigue is transformed into the study of damage evolution for fiber and matrix. Subsequently, the damage driving force and the damage evolution equations for the fiber and the matrix are constructed, respectively. Then, a novel parameter identified method is conducted. Finally, with the failure criterion for the lamina presented, the fatigue life prediction method of the composite lamina is proposed.


Sign in / Sign up

Export Citation Format

Share Document