scholarly journals Numerical Estimation of the Pile Toe and Shaft Unit Resistances During the Installation Process in Sands

2015 ◽  
Vol 37 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Jakub Konkol

Abstract Numerical simulations of a pile jacking were carried out. A Coupled Eulerian-Lagrangian (CEL) formulation was used to treat with large deformation problems. An Abaqus, a commercial Finite Element Method software suit, was used as a computing environment. The Mohr-Coulomb constitutive model was applied and the Coulomb model of friction was used to describe pile-soil interaction. Calculations were made for three different pile diameters. Toe and shaft unit resistances versus depth for each pile were investigated and plotted. CPT-based solutions were compared with the results of numerical simulations.

2006 ◽  
Vol 306-308 ◽  
pp. 1271-1276 ◽  
Author(s):  
H.R. Fang ◽  
T. Tang ◽  
X.M. Zhang ◽  
Zhuo Zhuang ◽  
Wei Yang ◽  
...  

The hyperelastic constitutive model of cardiac muscle is developed based on the animal surgical operation and mechanical experiments from the heart of the dogs, and the relaxation phenomena is also studied based on the Hill three elements model which is viscoelastic. Some numerical simulations are presented by finite element for the cardiac pacing/defibrillation lead interaction with muscles of the heart.


2020 ◽  
Vol 238 ◽  
pp. 06006
Author(s):  
Tim Käseberg ◽  
Jana Grundmann ◽  
Johannes Dickmann ◽  
Stefanie Kroker ◽  
Bernd Bodermann

We designed, realized, and characterised an imaging Mueller matrix ellipsometry setup for the pixelwise measurement of the Mueller matrices in microscope images. Our setup is capable of performing measurements in reflection as well as in transmission in a broad range of angles of incidence for wavelengths between 400 nm and 700 nm. We compared measurements of specially designed nanostructured samples with AFM and SEM measurements as well as with numerical simulations using the finite element method.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Mohammad Salem ◽  
Lindsey Westover ◽  
Samer Adeeb ◽  
Kajsa Duke

Abstract To simulate the mechanical and fracture behaviors of cancellous bone in three anatomical directions and to develop an equivalent constitutive model. Microscale extended finite element method (XFEM) models of a cancellous specimen were developed with mechanical behaviors in three anatomical directions. An appropriate abaqus macroscale model replicated the behavior observed in the microscale models. The parameters were defined based on the intermediate bone material properties in the anatomical directions and assigned to an equivalent nonporous specimen of the same size. The equivalent model capability was analyzed by comparing the micro- and macromodels. The hysteresis graphs of the microscale model show that the modulus is the same in loading and unloading; similar to the metal plasticity models. The strength and failure strains in each anatomical direction are higher in compression than in tension. The microscale models exhibited an orthotropic behavior. Appropriate parameters of the cast iron plasticity model were chosen to generate macroscale models that are capable of replicating the observed microscale behavior of cancellous bone. Cancellous bone is an orthotropic material that can be simulated using a cast iron plasticity model. This model is capable of replicating the microscale behavior in finite element (FE) analysis simulations without the need for individual trabecula, leading to a reduction in computational resources without sacrificing model accuracy. Also, XFEM of cancellous bone compared to traditional finite element method proves to be a valuable tool to predict and model the fractures in the bone specimen.


2019 ◽  
Vol 36 (9) ◽  
pp. 3138-3163 ◽  
Author(s):  
Wei-Hai Yuan ◽  
Wei Zhang ◽  
Beibing Dai ◽  
Yuan Wang

Purpose Large deformation problems are frequently encountered in various fields of geotechnical engineering. The particle finite element method (PFEM) has been proven to be a promising method to solve large deformation problems. This study aims to develop a computational framework for modelling the hydro-mechanical coupled porous media at large deformation based on the PFEM. Design/methodology/approach The PFEM is extended by adopting the linear and quadratic triangular elements for pore water pressure and displacements. A six-node triangular element is used for modelling two-dimensional problems instead of the low-order three-node triangular element. Thus, the numerical instability induced by volumetric locking is avoided. The Modified Cam Clay (MCC) model is used to describe the elasto-plastic soil behaviour. Findings The proposed approach is used for analysing several consolidation problems. The numerical results have demonstrated that large deformation consolidation problems with the proposed approach can be accomplished without numerical difficulties and loss of accuracy. The coupled PFEM provides a stable and robust numerical tool in solving large deformation consolidation problems. It is demonstrated that the proposed approach is intrinsically stable. Originality/value The PFEM is extended to consider large deformation-coupled hydro-mechanical problem. PFEM is enhanced by using a six-node quadratic triangular element for displacement and this is coupled with a four-node quadrilateral element for modelling excess pore pressure.


Sign in / Sign up

Export Citation Format

Share Document