Isolation, identification of yeast strains producing bioethanol and improvement of bioethanol production on cheese whey / Biyoetanol üreten maya türlerinin izolasyonu, tanılaması ve peynir altı suyunda biyoetanol üretiminin sağlıklaştırılması

2016 ◽  
Vol 41 (3) ◽  
Author(s):  
Khaled Boudjema ◽  
Fethia Fazouane-naimi ◽  
Amina Hellal

AbstractObjective: In this study, bioethanol production on cheese whey (prehydrolysed enzymatically using β galactosidase by isolated yeast strains was investigated.Methods: The yeast strains were isolated from Algerian natural sources (soil and grape) and further were selected on the basis of high ethanol tolerance and high ethanol production on prehydrolysed cheese whey. The selected ones were identified by morphological, physiological and biochemical characteristics. Then, a molecular identification was carried out by amplification and sequencing the D1/D2 domain of 26S rDNA region. In addition, the operating parameters of fermentation such as temperature, pH and substrate concentration (mixture of glucose and galactose) were tested for efficient yeast strain.Results: Among the selected and identified yeast strains, three strain isolates were found to be able to produce bioethanol. These strains are Hanseniaspora opuntiae Z087A0VS, Candida tropicalis Z087B0VS and Candida tropicalis Z087D0VS with an identity of 99% and 100% respectively comparing with the stocked strains in data bank. Furthermore, Hanseniaspora opuntiae presents an ethanol tolerance ethanol up to 11% whereas the two other strains of Candida tolerate up to 12%. The fermentation parameters of most efficient strain were optimized, the temperature 30°C, pH 5 and sugar concentration (glucose and galactose) of 12.5% (w/v) are considered as optimum values for Candida tropicalis Z087B0VS.Conclusion: Candida tropicalis Z087B0VS can be considered as a good candidature for industrial bioethanol production.

Beverages ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 27
Author(s):  
Dimitrios Kontogiannatos ◽  
Vicky Troianou ◽  
Maria Dimopoulou ◽  
Polydefkis Hatzopoulos ◽  
Yorgos Kotseridis

Nemea and Mantinia are famous wine regions in Greece known for two indigenous grape varieties, Agiorgitiko and Moschofilero, which produce high quality PDO wines. In the present study, indigenous Saccharomyces cerevisiae yeast strains were isolated and identified from spontaneous alcoholic fermentation of Agiorgitiko and Moschofilero musts in order to evaluate their oenological potential. Random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) recovered the presence of five distinct profiles from a total of 430 yeast isolates. The five obtained strains were evaluated at microvinifications trials and tested for basic oenological and biochemical parameters including sulphur dioxide and ethanol tolerance as well as H2S production in sterile grape must. The selected autochthonous yeast strains named, Soi2 (Agiorgitiko wine) and L2M (Moschofilero wine), were evaluated also in industrial (4000L) fermentations to assess their sensorial and oenological characteristics. The volatile compounds of the produced wines were determined by GC-FID. Our results demonstrated the feasibility of using Soi2 and L2M strains in industrial fermentations for Agiorgitiko and Moschofilero grape musts, respectively.


2006 ◽  
Vol 56 (5) ◽  
pp. 1153-1156 ◽  
Author(s):  
Zuo-Wei Wu ◽  
Feng-Yan Bai

Three anamorphic, ascomycetous yeast strains isolated from plant samples collected in Linzhi District, Tibet, China, were revealed as representing two novel species by 26S rRNA gene D1/D2 domain sequence and physiological property comparisons. The names Candida tibetensis sp. nov. and Candida linzhiensis sp. nov. are proposed for these novel species, with XZ 41-6T (=AS 2.3072T=CBS 10298T) and XZ 92-1T (=AS 2.3073T=CBS 10299T) as the respective type strains. D1/D2 sequence analysis showed that C. tibetensis and C. linzhiensis are closely related to Candida caryicola and Candida sequanensis, respectively.


2016 ◽  
Vol 33 ◽  
pp. S88
Author(s):  
Ekin Demiray ◽  
Sevgi Ertuğrul Karatay ◽  
Gönül Dönmez

2017 ◽  
Vol 39 (5) ◽  
pp. 533
Author(s):  
Cleidiane Samara Murari ◽  
Débora Cristina Moraes Niz da Silva ◽  
Bruna Lima da Silva ◽  
Vanildo Luiz Del Bianchi

The present study aimed the utilization of the cheese whey as substrate for ethanol production by Kluyveromyces marxianus.  Was studied the effect of the initial concentration of cheese whey (M1 57,6 g L-1; M2 45,6 g L-1; M3 32,5 g L-1 e M4 18,8 g L-1) on the alcoholic fermentation. After sterilization, the medium were incubated at 30ºC for 48 hours, performing analysis of lactose, proteins, ethanol, cell growth and chemical oxygen demand. According to the results, the medium M1 (the highest concentration) showed a higher production and productivity of ethanol 16.9 g L-1 and 1.26 g L.h-1, respectively, and also obtained the highest production and productivity of cell of 5.8 g L-1 and 0.40 g L.h-1, respectively. However, in terms of ethanol yield, the most satisfactory result was obtained with the M3 medium with 82.30% in 12 hours of fermentation. The organic substances content has been reduced in relation to COD in the medium M4 in 82.28%, representing a promising alternative for valorization of cheese whey as an effective alternative to obtain a renewable source of biofuel.


2019 ◽  
Vol 41 (24) ◽  
pp. 3210-3218 ◽  
Author(s):  
Fábio Coelho Sampaio ◽  
Janaína Teles de Faria ◽  
Milena Fernandes da Silva ◽  
Ricardo Pinheiro de Souza Oliveira ◽  
Attilio Converti

1983 ◽  
Vol 5 (5) ◽  
pp. 351-356 ◽  
Author(s):  
Tatsuji Seki ◽  
Sanae Myoga ◽  
Savitree Limtong ◽  
Shozo Uedono ◽  
Jaroon Kumnuanta ◽  
...  

2016 ◽  
Vol 82 (10) ◽  
pp. 3121-3130 ◽  
Author(s):  
Sirikarn Charoenbhakdi ◽  
Thanittra Dokpikul ◽  
Thanawat Burphan ◽  
Todsapol Techo ◽  
Choowong Auesukaree

ABSTRACTDuring fermentation, increased ethanol concentration is a major stress for yeast cells. Vacuolar H+-ATPase (V-ATPase), which plays an important role in the maintenance of intracellular pH homeostasis through vacuolar acidification, has been shown to be required for tolerance to straight-chain alcohols, including ethanol. Since ethanol is known to increase membrane permeability to protons, which then promotes intracellular acidification, it is possible that the V-ATPase is required for recovery from alcohol-induced intracellular acidification. In this study, we show that the effects of straight-chain alcohols on membrane permeabilization and acidification of the cytosol and vacuole are strongly dependent on their lipophilicity. These findings suggest that the membrane-permeabilizing effect of straight-chain alcohols induces cytosolic and vacuolar acidification in a lipophilicity-dependent manner. Surprisingly, after ethanol challenge, the cytosolic pH in Δvma2and Δvma3mutants lacking V-ATPase activity was similar to that of the wild-type strain. It is therefore unlikely that the ethanol-sensitive phenotype ofvmamutants resulted from severe cytosolic acidification. Interestingly, thevmamutants exposed to ethanol exhibited a delay in cell wall remodeling and a significant increase in intracellular reactive oxygen species (ROS). These findings suggest a role for V-ATPase in the regulation of the cell wall stress response and the prevention of endogenous oxidative stress in response to ethanol.IMPORTANCEThe yeastSaccharomyces cerevisiaehas been widely used in the alcoholic fermentation industry. Among the environmental stresses that yeast cells encounter during the process of alcoholic fermentation, ethanol is a major stress factor that inhibits yeast growth and viability, eventually leading to fermentation arrest. This study provides evidence for the molecular mechanisms of ethanol tolerance, which is a desirable characteristic for yeast strains used in alcoholic fermentation. The results revealed that straight-chain alcohols induced cytosolic and vacuolar acidification through their membrane-permeabilizing effects. Contrary to expectations, a role for V-ATPase in the regulation of the cell wall stress response and the prevention of endogenous oxidative stress, but not in the maintenance of intracellular pH, seems to be important for protecting yeast cells against ethanol stress. These findings will expand our understanding of the mechanisms of ethanol tolerance and provide promising clues for the development of ethanol-tolerant yeast strains.


Sign in / Sign up

Export Citation Format

Share Document