The d2 and d8 Noncubic Ligand Field Spectrum. I. The Complete Theory of Quadrate, Trigonal, and Cylindrical Ligand Fields

1972 ◽  
Vol 27 (12) ◽  
pp. 1820-1860 ◽  
Author(s):  
Jayarama Perumareddi

AbstractThe complete theory of Liehr and Ballhausen for d2 and d8 electronic configurations immersed in cubic fields has been extended to include noncubic ligand fields of quadrate, trigonal, and cylindrical symmetry. The complete set of symmetry adapted eigenvectors for the three symmetries have been derived in various coupling schemes in which the spin-orbit interaction, electron cor-relation, and ligand field in turn are varied from minor to dominant perturbations. The cor-responding energy matrices as a function of the parameters of the ligand field, electron correlation, and spin-orbit constant have been constructed in all the representations. Unitary transformations connecting different formalisms were obtained. The energy matrices have been solved for representative sets of parametric values and energy diagrams have been plotted in all the symmetries as well as in the square planar limit of the quadrate crystalline field. The secular determinants, the eigenfunctions, the energy diagrams, and the unitary transformations presented here are extremely useful in the study of the various aspects of spectroscopic, magnetic, and other properties of appropriate systems. The theory is applicable to quadrately distorted or substituted, trigonally distorted or substituted, octahedral and tetrahedral complexes and to compounds of cylindrical symmetry of d2 and d8 electronic configurations.

1973 ◽  
Vol 28 (8) ◽  
pp. 1247-1257
Author(s):  
J. R. Perumareddi

The trigonal d2 and d8 symmetry adapted eigenvectors and energy determinants have been obtained in two different representations, with and without cubic orientation. Spin-orbit perturbation was applied last in both the representations. The complete theory developed here is necessary in a definitive and a meaningful study of the interpretation of the spectral and magnetic properties of trigonally distorted or substituted cubic systems and of trigonal systems in which the axial part of the ligand field is of such a magnitude that the cubic parentage has no meaning.


1983 ◽  
Vol 23 (1) ◽  
pp. 169-183 ◽  
Author(s):  
Chia-Chung Sun ◽  
Yan-De Han ◽  
Be-Fu Li ◽  
Qian-Shu Li

1974 ◽  
Vol 29 (1) ◽  
pp. 31-41 ◽  
Author(s):  
E. König ◽  
S. Kremer

The complete ligand field -Coulomb repulsion -spin orbit interaction matrices have been derived for the d4 and d6 electron configurations within octahedral (Oh) and tetrahedral (Td) symmetry. The calculations were perform ed in both the weak-field and strong-field coupling schemes and complete agreement of the results was achieved. The energy matrices are parametrically dependent on ligand field (Dq), Coulomb repulsion (B, C) and spin-orbit interaction (ζ). Correct energy diagrams are presentend which display the splittings by spin-orbit perturbation as well as the effect of configuration mixing. Applications to the interpretation of optical spectral data, to the detailed behavior at the crossover of ground terms, and to complete studies in magnetism are pointed out.


1974 ◽  
Vol 29 (3) ◽  
pp. 419-428 ◽  
Author(s):  
E. König ◽  
R. Schnakig ◽  
S. Kremer

The complete ligand-field, Coulomb interelectronic repulsion, and spin-orbit interaction matrices have been derived for the d5 electron configuration within octahedral (Oh) and tetrahedral (Td) symmetry. The calculations were performed in both the weak-field and strong-field coupling schemes and complete agreement of the results was achieved. The energy matrices are parametrically dependent on ligand field (Dq), Coulomb repulsion (B, C), and spin-orbit interaction (ζ). Correct energy diagrams are presented which display the splittings by spin-orbit perturbation as well as the effect of configuration mixing. Applications to the interpretation of electronic spectra, and to complete studies in magnetism are pointed out. The detailed behavior at the crossover of ground terms is considered


2018 ◽  
Vol 20 (45) ◽  
pp. 28786-28795 ◽  
Author(s):  
Justin K. Kirkland ◽  
Shahriar N. Khan ◽  
Bryan Casale ◽  
Evangelos Miliordos ◽  
Konstantinos D. Vogiatzis

Multiconfigurational quantum chemical calculations on bare and representative ligated iron oxide dicationic species suggest that weak ligand fields promote more reactive channels, whereas strong ligand fields stabilize the less reactive iron-oxo structure.


1979 ◽  
Vol 34 (2) ◽  
pp. 211-219
Author(s):  
W. Tuszynski ◽  
G. Gliemann

Abstract Single crystal absorption spectra of tetrachloro, tetrabromo, and tetrathiocyanato complexes of Pd(II) and Pt(II) have been measured in the visible and near-ultraviolet region at temperatures between 10 K and 295 K. A spectral assignment of the observed d-d transitions based on ligand field theoretical calculations including electron-electron interaction and spin-orbit coupling is proposed which is consistent for all the systems investigated


Sign in / Sign up

Export Citation Format

Share Document