Elementare Herleitung der Dirac-Gleichung / Elementary Derivation of the Dirac Equation

1978 ◽  
Vol 33 (11) ◽  
pp. 1378-1379 ◽  
Author(s):  
Hans Sallhofer

As is well known, the Schrödinger equation can be derived by suitably arranging the refraction in the classical equation for light inhomogeneous media. In this paper it is shown that one may derive the Dirac equation in complete analogy by arranging for the refraction in the electrodynamics of inhomogeneous media.

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1373
Author(s):  
Louis H. Kauffman

This paper explains a method of constructing algebras, starting with the properties of discrimination in elementary discrete systems. We show how to use points of view about these systems to construct what we call iterant algebras and how these algebras naturally give rise to the complex numbers, Clifford algebras and matrix algebras. The paper discusses the structure of the Schrödinger equation, the Dirac equation and the Majorana Dirac equations, finding solutions via the nilpotent method initiated by Peter Rowlands.


1995 ◽  
Vol 73 (7-8) ◽  
pp. 478-483
Author(s):  
Rachad M. Shoucri

The self-adjoint form of the classical equation of motion of the harmonic oscillator is used to derive a Hamiltonian-like equation and the Schrödinger equation in quantum mechanics. A phase variable ϕ(t) instead of time t is used as an independent variable. It is shown that the Hamilton–Jacobi solution in this case is identical with the solution obtained from the Schrödinger equation without the need to introduce the idea of hidden variables or quantum potential.


2019 ◽  
Vol 33 (24) ◽  
pp. 1950285
Author(s):  
Saviour Worlanyo Akuamoah ◽  
Aly R. Seadawy ◽  
Dianchen Lu

In this paper, the energy and momentum operator substitution method derived from the Schrödinger equation is used to list all possible light and matter wave equations, among which the first light wave equation and relativistic approximation equation are proposed for the first time. We expect that we will have some practical application value. The negative sign pairing of energy and momentum operators are important characteristics of this paper. Then the Klein–Gordon equation and Dirac equation are introduced. The process of deriving relativistic energy–momentum relationship by undetermined coefficient method and establishing Dirac equation are mainly introduced. Dirac’s idea of treating negative energy in relativity into positrons is also discussed. Finally, the four-dimensional space-time representation of relativistic wave equation is introduced, which is usually the main representation of quantum electrodynamics and quantum field theory.


VLSI Design ◽  
1999 ◽  
Vol 9 (4) ◽  
pp. 365-375
Author(s):  
I. Gasser ◽  
P. A. Markowich ◽  
B. Perthame

We investigate regularizing dispersive effects for various classical equations, e.g., the Schrödinger and Dirac equations. After Wigner transform, these dispersive estimates are reduced to moment lemmas for kinetic equations. They yield new regularization results for the Schrödinger equation (valid up to the semiclassical limit) and the Dirac equation.


1991 ◽  
Vol 44 (6) ◽  
pp. 585
Author(s):  
TJ Allen ◽  
LJ Tassie

In both spherical and cylindrical coordinates, the radial Dirac equation can be written in the form of a Schrodinger equation with an effective potential. It is shown that the difficulties at r -+ 0 for the Dirac equation in the field of a point charge for Z > 137 are the same as those for the Schrodinger equation with a l/r2 potential. The effective potential is used to show that similar difficulties do not arise for the field of a line charge, so allowing the consideration of the motion of electrons in the field of a charged superconducting cosmic string without considering the internal structure of the string.


Author(s):  
Denis Lapitski ◽  
Paul J. Dellar

We investigate the convergence properties of a three-dimensional quantum lattice Boltzmann scheme for the Dirac equation. These schemes were constructed as discretizations of the Dirac equation based on operator splitting to separate the streaming along the three coordinate axes, but their output has previously only been compared against solutions of the Schrödinger equation. The Schrödinger equation arises as the non-relativistic limit of the Dirac equation, describing solutions that vary slowly compared with the Compton frequency. We demonstrate first-order convergence towards solutions of the Dirac equation obtained by an independent numerical method based on fast Fourier transforms and matrix exponentiation.


2021 ◽  
Vol 34 (2) ◽  
pp. 111-115
Author(s):  
Noboru Kohiyama

In the hydrogen atom, the eigenvalues of energy in j (l + 1/2, l ‐ 1/2) electron state cannot be correctly evaluated from the nonrelativistic Schrödinger equation. In order to express the relativistic properties of the wave equation for a particle with 1/2 spin, the Schrödinger equation is relativistically modified. The modified Schrödinger equation is solved for consistency with the eigenvalues of electron's energy derived from the Dirac equation. Based on the consistency of their eigenvalues, the different electron state is expressed. The microwave emission (e.g., 21 cm radio wave) by the hydrogen atom was thus predicted from this state.


Author(s):  
Kenneth G. Dyall ◽  
Knut Faegri

The development of quantum chemistry, that is, the solution of the Schrödinger equation for molecules, is almost exclusively founded on the expansion of the molecular electronic wave function as a linear combination of atom-centered functions, or atomic orbitals—the LCAO approximation. These orbitals are usually built up out of some set of basis functions. The properties of the atomic functions at large and small distances from the nucleus determines to a large extent what characteristics the basis functions must have, and for this purpose it is sufficient to examine the properties of the hydrogenic solutions to the Schrödinger equation. If we are to do the same for relativistic quantum chemistry, we should first examine the properties of the atomic solutions to determine what kind of basis functions would be appropriate. However, the atomic solutions of the Dirac equation provide more than merely a guide to the choice of basis functions. The atoms in a molecule retain their atomic identities to a very large extent, and the modifications caused by the molecular field are quite small for most properties. In order to arrive at a satisfactory description of the relativistic effects in molecules, we must first of all be able to treat these effects at the atomic level. The insight gained into the effects of relativity on atomic structure is therefore a necessary and useful starting point for relativistic quantum chemistry. As in the nonrelativistic case, most of the salient features of the atomic systems are exposed in the treatment of the simplest of these, the hydrogen-like one-electron atoms. In Hartree atomic units the time-independent Dirac equation yields the coupled equations where we have shifted the energy by −mc2 (with m = 1), as discussed in section 4.6. We will use this shifted energy scale for the rest of the book unless otherwise explicitly indicated. V is here a scalar, central potential.


Sign in / Sign up

Export Citation Format

Share Document