Exploded Points

1981 ◽  
Vol 36 (1) ◽  
pp. 72-75
Author(s):  
Okan Gurel

A new concept of a mathematical object of zero dimension, an exploded point, is introduced. The dimension used is defined on the basis of the functional characteristics of the system, thus it may be referred to as f-dimension. A stability index is also defined for the mathematical objects including exploded points, which can be related to the f-dimension. It is shown that the mathematical object exhibited by the Lorenz system after the second bifurcation is such a point. A recursive formula based on the definition of the exploded point

2019 ◽  
Vol 29 (14) ◽  
pp. 1950197 ◽  
Author(s):  
P. D. Kamdem Kuate ◽  
Qiang Lai ◽  
Hilaire Fotsin

The Lorenz system has attracted increasing attention on the issue of its simplification in order to produce the simplest three-dimensional chaotic systems suitable for secure information processing. Meanwhile, Sprott’s work on elegant chaos has revealed a set of 19 chaotic systems all described by simple algebraic equations. This paper presents a new piecewise-linear chaotic system emerging from the simplification of the Lorenz system combined with the elegance of Sprott systems. Unlike the majority, the new system is a non-Shilnikov chaotic system with two nonhyperbolic equilibria. It is multiplier-free, variable-boostable and exclusively based on absolute value and signum nonlinearities. The use of familiar tools such as Lyapunov exponents spectra, bifurcation diagrams, frequency power spectra as well as Poincaré map help to demonstrate its chaotic behavior. The novel system exhibits inverse period doubling bifurcations and multistability. It has only five terms, one bifurcation parameter and a total amplitude controller. These features allow a simple and low cost electronic implementation. The adaptive synchronization of the novel system is investigated and the corresponding electronic circuit is presented to confirm its feasibility.


2001 ◽  
Vol 11 (07) ◽  
pp. 1989-1996 ◽  
Author(s):  
JIN MAN JOO ◽  
JIN BAE PARK

This paper presents an approach for the control of the Lorenz system. We first show that the controlled Lorenz system is differentially flat and then compute the flat output of the Lorenz system. A two degree of freedom design approach is proposed such that the generation of full state feasible trajectory incorporates with the design of a tracking controller via the flat output. The stabilization of an equilibrium state and the tracking of a feasible state trajectory are illustrated.


2017 ◽  
Vol 27 (08) ◽  
pp. 1750128 ◽  
Author(s):  
Anda Xiong ◽  
Julien C. Sprott ◽  
Jingxuan Lyu ◽  
Xilu Wang

The famous Lorenz system is studied and analyzed for a particular set of parameters originally proposed by Lorenz. With those parameters, the system has a single globally attracting strange attractor, meaning that almost all initial conditions in its 3D state space approach the attractor as time advances. However, with a slight change in one of the parameters, the chaotic attractor coexists with a symmetric pair of stable equilibrium points, and the resulting tri-stable system has three intertwined basins of attraction. The advent of 3D printers now makes it possible to visualize the topology of such basins of attraction as the results presented here illustrate.


2021 ◽  
Vol 31 (08) ◽  
pp. 2130024
Author(s):  
Weisheng Huang ◽  
Xiao-Song Yang

We demonstrate in this paper a new chaotic behavior in the Lorenz system with periodically excited parameters. We focus on the parameters with which the Lorenz system has only two asymptotically stable equilibrium points, a saddle and no chaotic dynamics. A new mechanism of generating chaos in the periodically excited Lorenz system is demonstrated by showing that some trajectories can visit different attractor basins due to the periodic variations of the attractor basins of the time-varying stable equilibrium points when a parameter of the Lorenz system is varying periodically.


2007 ◽  
Vol 14 (5) ◽  
pp. 615-620 ◽  
Author(s):  
Y. Saiki

Abstract. An infinite number of unstable periodic orbits (UPOs) are embedded in a chaotic system which models some complex phenomenon. Several algorithms which extract UPOs numerically from continuous-time chaotic systems have been proposed. In this article the damped Newton-Raphson-Mees algorithm is reviewed, and some important techniques and remarks concerning the practical numerical computations are exemplified by employing the Lorenz system.


Author(s):  
David I. Spivak

Category theory is presented as a mathematical modelling framework that highlights the relationships between objects, rather than the objects in themselves. A working definition of model is given, and several examples of mathematical objects, such as vector spaces, groups, and dynamical systems, are considered as categorical models.


Author(s):  
Галина Леськів ◽  
Володимир Гобела ◽  
Назар Лесик

The study is devoted to the current problem of the formation and development of environmental entrepreneurship. The urgency of this problem is substantiated researched the unsatisfactory level of environmental safety of Ukrainian enterprises and the crisis of the environment. The study's purpose was to analyze the economic tools to stimulate environmental entrepreneurship, structural and functional characteristics and classification of tools to determine priority areas for improvement. The study forms a definition of economic tools to stimulate environmental entrepreneurship. Theoretical analysis and structural and functional characteristics of economic tools were performed. A scientific and methodological approach to the classification of economic tools was proposed, which allowed improving the system of its classification. Based on the results of the study, the main directions of development and improvement of economic tools to stimulate environmental entrepreneurship were proposed.


Sign in / Sign up

Export Citation Format

Share Document