Deuterium Hyperfine Structure of Nitric Acid — 15N

1984 ◽  
Vol 39 (7) ◽  
pp. 630-632
Author(s):  
E. Fliege ◽  
H. Dreizler

In this paper we present the determination of the deuterium quadrupole tensor of nitric acid D15NO3, performed with microwave Fourier transform spectroscopy applied to a gas sample in thermodynamic equilibrium. Hitherto molecular beam methods had to be used for similar investigations.

1987 ◽  
Vol 42 (9) ◽  
pp. 1043-1044 ◽  
Author(s):  
Ilona Merke ◽  
Helmut Dreizler

The quadrupole and spin rotation coupling constants are determined by analysis of the J = 0 - 1 and J = 1 - 2 transitions o f OC33S and 17OCS in natural abundance. The data are compared with those obtained from molecular beam electric resonance and very recent pulsed beam microwave Fourier transform spectroscopy.


1993 ◽  
Vol 48 (12) ◽  
pp. 1219-1222 ◽  
Author(s):  
U. Kretschmer ◽  
H. Dreizler

Abstract We investigated the 33S nuclear quadrupole coupling of thiazole- 33S in natural abundance by molecular beam Fourier transform microwave spectroscopy. In addition the 14N nuclear quadrupole coupling could be analyzed with high precision. We derived the rotational constants A = 8529.29268 (70) MHz, B = 5427.47098 MHz, and C = 3315.21676 (26) MHz, quartic centrifugal distortion constants and the quadrupole coupling constants of 33S χaa = 7.1708 (61) MHz and χbb= -26.1749 (69) MHz and of 14N χ aa = -2.7411 (61) MHz and χbb = 0.0767 (69) MHz.


1993 ◽  
Vol 48 (11) ◽  
pp. 1093-1101 ◽  
Author(s):  
C. Thomsen ◽  
H. Dreizler

Abstract The rotational spectrum of 2,6-lutidine, (CH3)2C5H3N, has been recorded between 6 and 26.5 GHz using pulsed molecular beam microwave Fourier transform spectroscopy. The rotational constants are A = 3509.7139(84) MHz, B = 1906.8639(101) MHz, and C = 1254.6215(14) MHz, the barrier to internal rotation of the two methyl groups is V3 = 1.1752 kJ/mol, their moments of inertia were found to be Iα = 3.0808(9) uÅ2 . The nitrogen nuclear quadrupole constants are χaa = +1.600(5) MHz, χbb = -4.572(3) MHz and χcc = +2.972(5) MHz.


1989 ◽  
Vol 44 (9) ◽  
pp. 837-840
Author(s):  
H. Ehrlichmann ◽  
J.-U. Grabow ◽  
H. Dreizler

Abstract We present an analysis of the rotational spectra of the normal and the N-deuterated pyrrolidine measured by microwave Fourier transform spectroscopy. The quartic centrifugal distortion con­ stants and the 14N coupling constants have been determined with higher accuracy. In addition the D hyperfine structure could be analyzed.


1986 ◽  
Vol 41 (4) ◽  
pp. 637-640 ◽  
Author(s):  
W. Kasten ◽  
H. Dreizler

The nitrogen 14N quadrupole hyperfine structure and the Stark effect in the rotational spectra of methyl isocyanate and methyl isothiocyanate were investigated by high resolution microwave Fourier transform spectroscopy.The components of the coupling tensor in the principal inertia axis system and the n a components of the dipole moments have been determined.


1988 ◽  
Vol 43 (7) ◽  
pp. 657-661 ◽  
Author(s):  
N. Heineking ◽  
H. Dreizler

AbstractWe redetermined the rotational and the chlorine-35 and nitrogen-14 nuclear quadrupole coupling constants of 3-chloropyridine. The values are A = 5839.5330(12) MHz, B = 1604.1875(6) MHz, and C = 1258.3121 (5) MHz for the rotational constants, and χaa(Cl) = - 72.255(19) MHz, χbb(Cl) = + 38.500(13) MHz, χcc(Cl) = + 33.755(23) MHz and χaa(N) = - 0.009(13) MHz, χbb(N) = - 3.473(10) MHz, χCC(N) = + 3.482(16) MHz for the chlorine-35 and nitrogen-14 nuclear quadrupole coupling constants, respectively.Application of double resonance modulation technique is shown to greatly simplify the assign­ment of hyperfine structure components even of weak rotational transitions.


1992 ◽  
Vol 47 (11) ◽  
pp. 1150-1152 ◽  
Author(s):  
Ilona Merke ◽  
Helmut Dreizler

Abstract We report on the analysis of the chlorine quadrupole hyperfine structure of thionyl chloride, S035Cl37 Cl, observed with a molecular beam microwave Fourier transform spectrometer


1989 ◽  
Vol 44 (7) ◽  
pp. 655-658 ◽  
Author(s):  
Olaf Böttcher ◽  
Nils Heineking ◽  
Dieter Hermann Sutter

Abstract The 14N hyperfine structure in the rotational spectra of cyclopropylamine and cyclopropyl cyanide has been reinvestigated by microwave Fourier transform spectroscopy. The observed quadrupole coupling constants in units of MHz are: Xaa = 2.3338(18), Xbb = 1.7874(20), Xcc = −4.1209(20) for cyclopropylamine and Xaa = −3.4536(35), Xbb= 1.7468(51), Xcc= 1.7068(51) for cyclopropyl cyanide.


1992 ◽  
Vol 47 (6) ◽  
pp. 761-764 ◽  
Author(s):  
J. L. Alonso ◽  
N. Heineking ◽  
H. Dreizler ◽  
N. Heineking ◽  
H. Dreizler

AbstractThe microwave spectra of α-methyl-γ-butyrolactone and 2-methylcyclopentanone have been reinvestigated using microwave Fourier transform spectroscopy. A-E splittings due to internal rotation of the methyl group have been observed in the ground and several vibrationally excited states for both molecules. From an internal-axis-method analysis of these splittings, values of the methyl group internal rotation barrier of 2.61 kcal mol-1 for α-methyl-γ-butyrolactone and 2.41 kcal mol-1 for 2-methylcyclopentanone have been obtained.


Sign in / Sign up

Export Citation Format

Share Document