Phase Diagram of the System LaCl3-CaCl2-NaCl

1987 ◽  
Vol 42 (12) ◽  
pp. 1421-1424 ◽  
Author(s):  
K. Igarashi ◽  
H. Ohtani ◽  
J. Mochinaga

The phase diagram of ternary system LaCl3-CaCl2-NaCl has been constructed from the phase diagrams of the three binary systems and of thirteen quasi-binary systems determined by DTA. For the binaries LaCl3-CaCl2 and CaCl2-NaCl eutectic points were observed at 651 °C , 35.1 mol% LaCl3 and at 508 °C , 49.9 mol% NaCl, respectively. For LaCl3-NaCl, a peritectic point besides the eutectic point at 545 °C , 36.1 mol% LaCl3 was found at 690 °C , 57.5 mol%, which is attributable to the formation of the peritectic compound 3 LaCl3 · NaCl. The phase diagram of the ternary system has a ternary eutetic point and a ternary peritectic point due to 3 LaCl3-NaCl, the form er at 462 °C and 12.1 - 3 9 .7 - 4 8 .2 mol% (LaCl3-CaCl2-NaCl) and the latter at 612 °C and 26.9 - 55.1 - 18.0 mol%.

2014 ◽  
Vol 790-791 ◽  
pp. 265-270
Author(s):  
Eszter Tatárka ◽  
Tamás Mende ◽  
András Roósz

This paper includes the binary and ternary liquidus temperature calculations of Sn-Bi-Cd system. The calculation was performed in cases of the surfaces of Sn, Bi and Cd phases too. First of all the liquidus curves were calculated in the binary systems (Bi phase in Bi-Cd and Bi-Sn systems, Sn phase in Sn-Cd and Sn-Bi systems, Cd phase in Cd-Sn and Cd-Bi systems). By using the calculated coefficients of the binary phase diagrams and the data from the digitalized ternary phase diagram, the liquidus temperature of Sn, Bi and the Cd phases were calculated. Finally the eutectic point of the binary liquidus curves and the eutectic valley of the Sn and the Bi surfaces were calculated by means of an iteration method.


Author(s):  
M. D. Parfenova ◽  
V. P. Vorob'eva ◽  
V. I. Lutsyk

Spatial (three-dimensional - 3D) computer model of the T-x-y diagram of the Ag - Cu - Ni system, which is promising for the development of environmentally friendly solders, is presented. The model is constructed on the basis of published data on the binary systems forming this ternary system, the concentration projection of the liquidus surfaces, and four isothermal sections. It is shown that the phase diagram (PD) consists of 14 surfaces and 9 phase regions. The adequacy of the model is confirmed by comparing the isothermal sections and the liquidus projection.


1984 ◽  
Vol 62 (3) ◽  
pp. 457-474 ◽  
Author(s):  
A. D. Pelton ◽  
C. W. Bale ◽  
P. L. Lin

Phase diagrams and thermodynamic properties of five additive molten salt ternary systems and nine reciprocal molten salt ternary systems containing the ions Li+, Na+, [Formula: see text], OH− are calculated from the thermodynamic properties of their binary subsystems which were obtained previously by a critical assessment of the thermodynamic data and the phase diagrams in these binary systems. Thermodynamic properties of ternary liquid phases are estimated from the binary properties by means of the Conformal Ionic Solution Theory. The ternary phase diagrams are then calculated from these thermodynamic properties by means of computer programs designed for the purpose. It is found that a ternary phase diagram can generally be calculated in this way with a maximum error about twice that of the maximum error in the binary phase diagrams upon which the calculations are based. If, in addition, some reliable ternary phase diagram measurements are available, these can be used to obtain small ternary correction terms. In this way, ternary phase diagram measurements can be smoothed and the isotherms drawn in a thermodynamically correct way. The thermodynamic approach permits experimental data to be critically assessed in the light of thermodynamic principles and accepted solution models. A critical assessment of error limits on all the calculated ternary diagrams is made, and suggestions as to which composition regions merit further experimental study are given.


2020 ◽  
Vol 65 (7) ◽  
pp. 3420-3427
Author(s):  
Yuan Zhong ◽  
Junsheng Yuan ◽  
Min Wang ◽  
Jinli Li

2015 ◽  
Vol 814 ◽  
pp. 313-318 ◽  
Author(s):  
Jia Lian Li ◽  
Shu Liang Wang ◽  
Lu Jiang Zhou ◽  
Xiao Hong Wang ◽  
Yuan Hua Lin ◽  
...  

The addition of the rare earth elements into the Ag-based filler alloy, which is typical and important, can control and eliminate the negative effect of impurity elements, and furthermore, it improves the spreading property of the Ag-based filler alloy. Phase diagram provides an important direction for materials design of the Ag-based filler alloy. Thus it is necessary to investigate the phase diagrams and construct the thermodynamic database. On the basis of this background, thermodynamic assessments of the Au-Gd, Tb binary systems were carried out by using the CALPHAD (Calculation of Phase Diagrams) method based on the experimental data including thermodynamic properties and phase equilibrium. The Gibbs free energies of the solution phases were described by sub-regular solution models with the Redlich-Kister equation, while all of the intermetallic compounds were described by sub-lattice models. A consistent set of thermodynamic parameters was derived from describing the Gibbs free energies of each solution phase and intermetallic compound. The calculated phase diagram achieved consistency with the available experiments. Then combined with the assessed relevant binary systems, the Ag-Au-Gd, Tb ternary systems have been predicted. The thermodynamic database of these ternary systems has been developed to present the significant information for the design of Ag-based filler alloys.


2007 ◽  
Vol 561-565 ◽  
pp. 1899-1902 ◽  
Author(s):  
T. Tokunaga ◽  
N. Hanaya ◽  
Hiroshi Ohtani ◽  
Mitsuhiro Hasebe

A thermodynamic analysis of the Fe-Mn-P ternary system has been carried out using the CALPHAD method. Among the three binary systems relevant to this ternary phase diagram, the thermodynamic parameters of the Mn-P binary system were evaluated in this study. The enthalpy of formation of the binary phosphides obtained from our first-principles calculations was utilized in the present analysis to compensate for the lack of available experimental data. The thermodynamic descriptions of the Fe-Mn and Fe-P binary systems were taken from previous studies. The phase equilibria in the Fe-Mn-P ternary system were analysed based on the experimental data on the phase boundaries. The calculated phase diagrams are in agreement with the experimental results.


1990 ◽  
Vol 55 (7) ◽  
pp. 1741-1749
Author(s):  
Milan Drátovský ◽  
Bohumír Grüner ◽  
Ivan Horsák ◽  
Jiří Makovička

The phase diagram of the KCN-KI binary system was measured and the published phase diagrams of the KCN-NaCN, NaI-KI and NaCN-NaI systems were verified and completed. The systems form solid solutions with minima on the liquidus and solidus curves. The solid solutions in the KCN-KI system probably have a high segregation temperature, close to the solidus curve. For the four binary systems the experimental points were fitted with liquidus and solidus curves either by applying smoothing spline functions or by using two different models. The results obtained are discussed.


2013 ◽  
Vol 807-809 ◽  
pp. 2788-2792
Author(s):  
Hong Xia Li ◽  
De Wen Zeng ◽  
Yan Yao

Kieserite (MgSO4·H2O) which has great application in recent years, was prepared according to the binary system MgSO4H2O at 80°C and the ternary system MgCl2MgSO4H2O at 25°C, 50°C and 75°C phase diagrams in this research. We reveal that the pure MgSO4·H2O is acquired in the ternary system MgCl2MgSO4H2O at 75°C with MgCl2 (23.966%~37.93%) for the equilibrium time 5~7days. The higher hydrated magnesium sulfate can be obtained in the ternary system with MgCl2 (0~34.52%) at 25°C, (0~35.684%) at 50°C, and (0~23.966%) at 75°C for 5~7days. These results are beneficial for the industrial production by converting MgSO4·7H2O and MgCl2·6H2O which are not fully exploited in salt pans into the useful MgSO4·H2O.


Author(s):  
Libin Liu ◽  
Cristina Andersson ◽  
Johan Liu ◽  
Y. C. Chan

To select a lead-free solder system, factors such as eutectic/peritectic point, electron negativity, abundance, cost, toxicity of elements, world production capacity, segregation during solidification, possibility to form low melting phases with Pb, among others must be carefully considered. On the basis of thorough analysis of binary phase diagrams of Sn-X-systems (X represents other elements) and the properties of the element X, the Sn-Co-Cu eutectic ternary alloy system has been chosen as a new lead-free solder candidate. In order to find the eutectic point for the Sn-Co-Cu system, the Sn-Co binary system was thoroughly assessed with CALPHAD (CALculation of PHAse Diagram) methods. The ternary phase diagram of Sn-Co-Cu system was extrapolated with the assessed thermodynamic parameters of Sn-Co, Sn-Cu, and Co-Cu system. The eutectic point for L–Sn2Co+(Sn)+Cu6Sn5 is 224.4°C and 0.37%Co and 0.68%Cu and 98.95%Sn.


Sign in / Sign up

Export Citation Format

Share Document