salt pans
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 31)

H-INDEX

16
(FIVE YEARS 1)

2022 ◽  
Vol 14 (2) ◽  
pp. 385
Author(s):  
Bin Ai ◽  
Ke Huang ◽  
Jun Zhao ◽  
Shaojie Sun ◽  
Zhuokai Jian ◽  
...  

Coastal reclamation in Guangdong Province is highly concentrated and is growing rapidly. However, intensive reclamation use has resulted in serious influence on the coastal ecosystem, directly and indirectly. The current conditions and spatial distribution of reclamations must be detected for coastal preservation and management using efficient technology. This study aims to find a suitable method and data to map reclamations accurately at a large scale. Pixel-based and object-oriented classification methods were applied in extracting the three typical types of coastal reclamation, namely, ports, aquaculture ponds, and salt pans, in Guangdong Province from Landsat 8 and Sentinel 2 images. The algorithms of a support vector machine, random forest, decision tree, and rule-based algorithm were performed. Classification results were compared with statistical measures to assess the performance of different algorithms. The results indicated that all of the algorithms could obtain classification results with high accuracy, whereas the object-oriented algorithm showed less efficiency than other algorithms in classifying ports with complicated features. High-resolution data were not always superior to lower-resolution data in the reclamation classification. Generally speaking, applying the rule-based object-oriented algorithm in Sentinel 2A MSI images is relatively efficient at detecting the reclamation use in coastal Guangdong considering its actual situation. The mapping of reclamations in the whole of coastal Guangdong shows that they present obvious agglomeration characteristics in the space. The aquaculture ponds are mainly distributed in the coastal zones of western Guangdong and eastern Guangdong, with the largest area of 77,963 ha. The other types of ports are mainly distributed in the coastal zones of the Pearl River Delta, with an area of 8146 ha, while salt pans are mainly distributed in the coastal zones of Jiangmen, Zhuhai, and Zhongshan, with a total area of 4072 ha. The results can provide key supporting data for decision making in coastal management and preservation.


Author(s):  
Bernardo Duarte ◽  
Eduardo Feijão ◽  
Márcia Vaz Pinto ◽  
Ana Rita Matos ◽  
Anabela Silva ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md. Refat Jahan Rakib ◽  
Sultan Al Nahian ◽  
María B. Alfonso ◽  
Mayeen Uddin Khandaker ◽  
Christian Ebere Enyoh ◽  
...  

AbstractMicroplastics (MP) were recognized as an emergent pollution problem due to their ubiquitous nature and bioaccumulative potential. Those present in salt for consumption could represent a human exposure route through dietary uptake. The current study, conducted in Bangladesh, reports microplastics contamination in coarse salt prepared for human consumption. Sea salt samples were collected from eight representative salt pans located in the country's largest salt farming area, in the Maheshkhali Channel, along the Bay of Bengal. Microplastics were detected in all samples, with mean concentrations ranging from 78 ± 9.33 to 137 ± 21.70 particles kg−1, mostly white and ranging in size from 500–1000 µm. The prevalent types were: fragments (48%) > films (22%) > fibers (15%) > granules and lines (both 9%). Fourier transform mid-IR and near-IR spectra (FT-MIR-NIR) analysis registered terephthalate (48%), polypropylene (20%), polyethylene (17%), and polystyrene (15%) in all samples. These results contribute to the MP's pollution knowledge in sea salts to understand and reduce this significant human exposure route and environmental pollution source in the future.


Author(s):  
Yihao Zhu ◽  
Xiliang Song ◽  
Xiaoli Liu ◽  
Weifeng Chen ◽  
Xuchang Niu ◽  
...  

Reclamation has been widely accepted to restore abandoned lands. Most studies focused on the improvement of land reclamation in soil nutrients and microbial activities. However, the effects of reclamation time on bacterial communities of abandoned salt pans are still unclear. The object of this study is to: i) assess the successional change of soil physicochemical properties and bacterial communities in reclaimed abandoned salt pans with different reclamation histories, and ii) figure out the main limit factors on the improvement of soil quality in reclaimed abandoned salt pans. The soils in a farmland (RTBL) and six abandoned salt pans with 1 year (RT1), 2 years (RT2), 3 years (RT3), 4 years (RT4), 8 years (RT8), and 9 years (RT9) of reclamation were sampled to investigate the temporal variation of soil properties, heavy metal content, bacterial community composition, and diversity. Results showed that the soil bulk density (BD), total dissolved salt (SS), median particle size (MMAD) decreased with the increase of reclamation time, while soil nutrient (soil organic matter, total nitrogen, available phosphorus, available potassium) showed an opposite trend. The bacterial α-diversity increased first, then decrease. Land reclamation enhanced the relative abundances of Acidobacteria, Chloroflexi, and Actinobacteria but reduced the relative abundances of Proteobacteria, Gemmatimonadetes, and Bacteroidetes. Compared with RTBL, the soil nutrients and bacterial community structure in RT1, RT2, RT3, and RT4 showed a significant difference.Therefore, reclamation time is a vital driving force for restoring soil physicochemical properties and bacterial communities in abandoned


2021 ◽  
Vol 12 ◽  
Author(s):  
Claudia Petrillo ◽  
Stefany Castaldi ◽  
Mariamichela Lanzilli ◽  
Matteo Selci ◽  
Angelina Cordone ◽  
...  

Massive application of chemical fertilizers and pesticides has been the main strategy used to cope with the rising crop demands in the last decades. The indiscriminate use of chemicals while providing a temporary solution to food demand has led to a decrease in crop productivity and an increase in the environmental impact of modern agriculture. A sustainable alternative to the use of agrochemicals is the use of microorganisms naturally capable of enhancing plant growth and protecting crops from pests known as Plant-Growth-Promoting Bacteria (PGPB). Aim of the present study was to isolate and characterize PGPB from salt-pans sand samples with activities associated to plant fitness increase. To survive high salinity, salt-tolerant microbes produce a broad range of compounds with heterogeneous biological activities that are potentially beneficial for plant growth. A total of 20 halophilic spore-forming bacteria have been screened in vitro for phyto-beneficial traits and compared with other two members of Bacillus genus recently isolated from the rhizosphere of the same collection site and characterized as potential biocontrol agents. Whole-genome analysis on seven selected strains confirmed the presence of numerous gene clusters with PGP and biocontrol functions and of novel secondary-metabolite biosynthetic genes, which could exert beneficial impacts on plant growth and protection. The predicted biocontrol potential was confirmed in dual culture assays against several phytopathogenic fungi and bacteria. Interestingly, the presence of predicted gene clusters with known biocontrol functions in some of the isolates was not predictive of the in vitro results, supporting the need of combining laboratory assays and genome mining in PGPB identification for future applications.


Author(s):  
R. McG. Miller ◽  
C. Krapf ◽  
T. Hoey ◽  
J. Fitchett ◽  
A-K. Nguno ◽  
...  

Abstract The aeolian regime of the 100 km wide, hyperarid Namib Desert has been sporadically punctuated by the deposition of fluvial sediments generated during periods of higher humidity either further inland or well within the desert from Late Oligocene to Late Holocene. Four new Late Cenozoic formations are described from the northern Skeleton Coast and compared with formations further south: the Klein Nadas, Nadas (gravels, sands), Vulture’s Nest (silts) and Uniab Boulder Formations. The Klein Nadas Formation is a trimodal mass-flow fan consisting of thousands of huge, remobilised, end-Carboniferous Dwyka glacial boulders, many >3 m in length, set in an abundant, K-feldspar-rich and sandy matrix of fine gravel. Deluge rains over the smallest catchments deep within the northern Namib were the driving agent for the Klein Nadas Fan, the termination of which, with its contained boulders, rests on the coastal salt pans. These rains also resulted in catastrophic mass flows in several of the other northern Namib rivers. The Uniab Boulder Formation, being one, consists only of huge free-standing boulders. Gravelly fluvial deposition took place during global interglacial and glacial events. The Skeleton Coast Erg and other smaller dune trains blocked the rivers at times. The low-energy, thinly bedded silt deposits of the central and northern Namib are quite distinctive from the sands and gravels of older deposits. Their intermittent deposition is illustrated by bioturbation and pedogenesis of individual layers. Published offshore proxy climatological data (pollens, upwelling, wind, sea surface temperatures) point to expansion of the winter-rainfall regime of the southern Cape into southwestern Angola during strong glacial periods between the Upper Pleistocene and Holocene. In contrast to deposition initiated by short summer thunder storms, we contend that the silt successions are river-end accumulations within which each layer was deposited by runoff from comparatively gentle winter rains that lasted several days.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0248543
Author(s):  
Rajashree Naik ◽  
Laxmikant Sharma

Saline lakes occupy 44% and 23% of the volume and area of all lakes that are tending to suffer from extended dryness, reduced hydro period, or complete desiccation by 2025. The current study is conducted on Sambhar Salt Lake, the largest inland saline Ramsar, site of India, contributing to 9.86% of total salt production. The lake is under threat due to illegal salt pan encroachment, losing brine worth 300 million USD. The objective was to identify the key drivers that affect the lake at a landscape level. Geospatial modelling was conducted for 96 years (1963–2059) at a decadal scale, integrating ground data (birds-soil-water). Land Use Land Cover (LULC) classification was conducted using CORONA aerial imagery of 1963, along with Landsat imageries, using supervised classification for 1972, 1981, 1992, 2009, and 2019, and future prediction for 2029, 2039, 2049, and 2059. Further, images were classified into 8 classes that include the Aravali hills, barren land, saline soil, salt crust, salt pans, wetland, settlement, and vegetation. Past trends show a reduction of wetland from 30.7 to 3.4% at a constant rate (4.23%) to saline soil, which subsequently seemed to increase by 9.3%, increasing thereby the barren land by 4.2%; salt pans by 6.6%, and settlement by 1.2% till 2019. Future predictions show loss of 40% wetland and 120% of saline soil and net increase in 30% vegetation, 40% settlement, 10% salt pan, 5% barren land, and a net loss of 20%, each by Aravali hills and salt crust. Additionally, the ground result shows its alteration and reduction of migratory birds from 3 million to 3000. In the light of UN Decade on Ecosystem Restoration (2021–2030), restoration strategies are suggested; if delayed, more restoration capital may be required than its revenue generation.


2021 ◽  
Author(s):  
Tony Thompson

<p>The Europlanet 2024 Research Infrastructure (RI) provides free access to the world’s largest collection of planetary simulation and analysis facilities. The project is funded through the European Commission’s Horizon 2020 programme and runs for four years from February 2020 until January 2024. The Transnational Access (TA) programme supports all travel and local accommodation costs for European and international researchers to visit over 40 laboratory facilities and 6 Planetary Field Analogues (PFA) [1].</p> <p>As part of the education and inspiration tasks associated with Europlanet 2024 RI, we have produced classroom resources aimed at age 10-14 year olds relating the conditions found within the PFA sites to astrobiology and the habitability of Mars.</p> <p>These resources have been produced around all PFA sites:</p> <ul> <li>Rio Tinto River (Spain)</li> <li>Iceland Field Sites (Iceland)</li> <li>Danakil Depression (Ethiopia)</li> <li>Kangerlussuaq Field Site (Greenland)</li> <li>Makgadikgadi Salt Pans (Botswana)</li> <li>Andes (Argentina)</li> </ul> <p>These resources link in with common areas found in worldwide STEM curriculums, such as volcanism, pressure, pH and evaporation. To achieve this, we have filmed lab-based demonstrations and included them in a classroom lesson plan alongside teachers' notes. In addition, each lesson plan focuses on how the conditions of the PFAs could affect the habitability of Mars.</p> <p>An Italian version of the resources has been produced by EduINAF with the addition of brief video-lessons.  English versions were released on a weekly basis from mid-March through April with opportunities for training sessions to support teachers wishing to engage with these resources.</p> <p>Following studies such as Salimpour et al 2020 [2], highlighting the extent to which astronomy has been incorporated into school curriculums, we have chosen to highlight three subject areas with lower representation in high schools into our resources: physics, space exploration and astrobiology.</p> <p>As these analogue sites can be linked to more planetary bodies than just Mars, our next steps are to create similar resources based around the habitability of the icy moons of the Solar System.</p>


2021 ◽  
Vol 14 (9) ◽  
Author(s):  
Magdy Khalil ◽  
Mona Elharairey ◽  
Eman Atta ◽  
Hatem Aboelkhair
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document