Large-N Expansion for a Nucleon-Nucleon Potential

1989 ◽  
Vol 44 (11) ◽  
pp. 1137-1138 ◽  
Author(s):  
Fevzi Büyükkilic ◽  
Dogan Demirhan

Abstract The Schrödinger equation has been solved by \/N expan­ sion for a two nucleon system which interacts by an attrac­ tive Yukawa potential. For the ground and first excited states, energy eigenvalues have been obtained.

2016 ◽  
Vol 94 (2) ◽  
pp. 231-235
Author(s):  
M.I. Sayyed

The s-wave time-independent Schrödinger equation with an isotropic velocity-dependent potential is considered. We have used perturbation theory to calculate the scattering phase shifts when the energy is changed by a small amount ΔE from an arbitrary unperturbed value E0. The validity of our results was tested by comparing the perturbed phase shifts to those obtained exactly by solving the Schrödinger equation. We assumed the local potential to have the form of a finite square well and the velocity-dependent part of the potential to have the form of a Yukawa potential.


2006 ◽  
Vol 21 (10) ◽  
pp. 2191-2199 ◽  
Author(s):  
SAMEER M. IKHDAIR ◽  
RAMAZAN SEVER

The fourth Standard Model (SM) family quarks and weak iso-singlet quarks predicted by E6GUT are considered. The spin-average of the pseudoscalar η4(n1S0) and vector ψ4(n3S1) quarkonium binding masses of the new mesons formed by the fourth Standard Model (SM) family and iso-singlet E6with their mixings to ordinary quarks are investigated. Further, the fine and hyperfine mass splittings of the these states are also calculated. We solved the Schrödinger equation with logarithmic and Martin potentials using the shifted large-N expansion technique. Our results are compared with other models to gauge the reliability of the predictions and point out differences.


2019 ◽  
Vol 65 (4 Jul-Aug) ◽  
pp. 333 ◽  
Author(s):  
C. O. Edet ◽  
And P. O. Okoi

The bound state approximate solution of the Schrodinger equation is obtained for the q-deformed Hulthen plus generalized inverse quadratic Yukawa potential (HPGIQYP) in -dimensions using the Nikiforov-Uvarov (NU) method and the corresponding eigenfunctions are expressed in Jacobi polynomials. Seven special cases of the potential are discussed and the numerical energy eigenvalues are calculated for two values of the deformation parameter in different dimensions.


2021 ◽  
Vol 3 (2) ◽  
pp. 34-43
Author(s):  
P. O. Ushie ◽  
C. M. Ekpo ◽  
T. O. Magu ◽  
P. O. Okoi

Within the framework of Nikiforov-Uvarov method, we obtained an approximate solution of the Schrodinger equation for the Energy Dependent Generalized inverse quadratic Yukawa potential model. The bound state energy eigenvalues for were computed for various vibrational and rotational quantum numbers. Special cases were considered when the potential parameters were altered, resulting into Energy Dependent Kratzer and Kratzer potential, Energy Dependent Kratzer fues and Kratzer fues potential, Energy Dependent Inverse quadratic Yukawa and Inverse quadratic Yukawa Potential, Energy Dependent Yukawa (screened Coulomb) and Yukawa (screened Coulomb) potential, and Energy Dependent Coulomb and Coulomb potential, respectively. Their energy eigenvalues expressions and numerical computations agreed with the already existing literatures.


2019 ◽  
Vol 44 (3) ◽  
pp. 50-55 ◽  
Author(s):  
Benedict Iserom Ita ◽  
Hitler Louis ◽  
Nelson Nzeata-Ibe

The main objective of this research work is theoretical investigate the bound state solutions of the non-relativistic Schrödinger equation with a mixed potential composed of the Inversely Quadratic Yukawa/Attractive Coulomb potential plus a Modified Kratzer potential (IQYCKFP) by utilizing the Wentzel-Kramers-Brillouin (WKB) quantum theoretical formalism. The energy eigenvalues and its associated wave functions have successfully been obtained sequel to certain diatomic molecules includes; HCL, HBr, LiH.


2006 ◽  
Vol 15 (06) ◽  
pp. 1253-1262 ◽  
Author(s):  
M. KARAKOC ◽  
I. BOZTOSUN

We apply the asymptotic iteration method to solve the radial Schrödinger equation for the Yukawa type potentials. The solution of the radial Schrödinger equation by using different approaches requires tedious and cumbersome calculations; however, we present that it is possible to obtain the bound state energy eigenvalues for any n and ℓ values easily within the framework of this method. We also show the perturbed application of this method for the same potential. Our results are in excellent agreement with the findings of the SUSY perturbation, 1/N expansion and numerical methods.


2008 ◽  
Vol 17 (07) ◽  
pp. 1327-1334 ◽  
Author(s):  
RAMAZÀN SEVER ◽  
CEVDET TEZCAN

Exact solutions of Schrödinger equation are obtained for the modified Kratzer and the corrected Morse potentials with the position-dependent effective mass. The bound state energy eigenvalues and the corresponding eigenfunctions are calculated for any angular momentum for target potentials. Various forms of point canonical transformations are applied.


2021 ◽  
pp. 2150041
Author(s):  
U. S. Okorie ◽  
A. N. Ikot ◽  
G. J. Rampho ◽  
P. O. Amadi ◽  
Hewa Y. Abdullah

By employing the concept of conformable fractional Nikiforov–Uvarov (NU) method, we solved the fractional Schrödinger equation with the Morse potential in one dimension. The analytical expressions of the bound state energy eigenvalues and eigenfunctions for the Morse potential were obtained. Numerical results for the energies of Morse potential for the selected diatomic molecules were computed for different fractional parameters chosen arbitrarily. Also, the graphical variation of the bound state energy eigenvalues of the Morse potential for hydrogen dimer with vibrational quantum number and the range of the potential were discussed, with regards to the selected fractional parameters. The vibrational partition function and other thermodynamic properties such as vibrational internal energy, vibrational free energy, vibrational entropy and vibrational specific heat capacity were evaluated in terms of temperature. Our results are new and have not been reported in any literature before.


Sign in / Sign up

Export Citation Format

Share Document