1H and 2H NMR Studies of Mixtures 2,6-Lutidine/Water Near the Lower Critical Solution Point

1992 ◽  
Vol 47 (4) ◽  
pp. 583-587 ◽  
Author(s):  
Vytautas Balevicius ◽  
Norbert Weiden ◽  
Alarich Weiss

AbstractDeuteron spin-lattice relaxation time (TJ measurements of binary mixtures 2,6-lutidine/D20 have been done near the lower critical solution point (TC, L), ε = (T - TC, L)/TC, L ≧10-5. Singularities are observed at TC, L. The changes in the slope of T1 (2H) = ƒ ( T ) can be interpreted as due to the effect of concentration changes on Ty and simultaneously strong overlaping of 2H NMR signals from coexisting phases. In the two-phase region, ca. 2°C above TC, L two D2O signals with very strong temperature evolution have been detected. Similar doubling of 2,6-lutidine 1H NMR signals has been observed already at T - TC, L ≦ 1 °C. It is shown that the two signals arise from the nuclei in two coexisting phases; they are not due to pecularities of hydrogen bond. The difference between chemical shifts of both D2O signals δ’ - δ” possess the property of an order parameter, i.e. δ’ - δ” ~ εβ with β = 0.336±0.030

1991 ◽  
Vol 69 (5) ◽  
pp. 822-833 ◽  
Author(s):  
Roderick E. Wasylishen ◽  
Jan C. T. Kwak ◽  
Zhisheng Gao ◽  
Elisabeth Verpoorte ◽  
J. Bruce MacDonald ◽  
...  

Information concerning the solubilization of hydrocarbons in ionic surfactant micelles was obtained from 2H NMR relaxation, 1H NMR chemical shifts, and 1H NMR paramagnetic relaxation measurements. The rotational motion of deuterated hydrocarbons, which is related to the micellar microviscosity at the location of the hydrocarbons, was probed by 2H NMR relaxation. The relaxation data are interpreted using both the two-step and the single-step models, and the results are discussed in terms of the micellar microviscosity and the location of the hydrocarbons in micelles. The location of the hydrocarbons in micelles was further investigated by determining the aromatic ring current-induced 1H chemical shifts along the surfactant alkyl chain and by comparing the 1H spin-lattice relaxation enhancement of the hydrocarbons and the surfactant alkyl chain, induced by Mn2+ on the micellar surface. The hydrocarbons used include benzene, naphthalene, acenaphthalene, triphenylene, cyclohexane, cyclododecane, and tert-butylcyclohexane and the surfactants studied are hexadecyl-, tetradecyl-, and dodecyltrimethylammonium bromide; hexadecyl-, tetradecyl-, and dodecylpyridinium halide; and sodium dodecyl sulfate. The results indicate that the micellar microviscosity at the location of saturated hydrocarbons is approximately 5 cP for both the cationic and anionic micelles, whereas the micellar microviscosity at the location of unsaturated hydrocarbons is much higher. The unsaturated hydrocarbons are found to reside primarily near the surfactant headgroup in the cationic micelles, but are distributed evenly throughout the anionic SDS micelles. The saturated hydrocarbons appear to be located in the interior of the micelles. Key words: NMR, relaxation, solubilization, surfactant, micelle.


1999 ◽  
Vol 54 (6-7) ◽  
pp. 431-436 ◽  
Author(s):  
Shin’ichi Ishimaru ◽  
Ryuichi Ikeda

Abstract The dynamics of water molecules intercalated in D2O saturated synthetic and natural smectites, and a synthetic Na-fluormica were studied by measurements of solid state 2H NMR spectra and spin-lattice relaxation times at 150 - 370 K. The obtained results could be explained by the 2-site flip, the C2 rotation and the isotropic rotation of the D2O molecules in smectites. In fluormica, the isotropic motion was undetectable, but the axial rotation of the hydration sphere as a whole was observed. The activation energies and correlation times of the C2 rotation were almost independent of the interlayer cations but depended on the character of clay-layers.


1990 ◽  
Vol 23 (2) ◽  
pp. 470-475 ◽  
Author(s):  
S. G. Stafford ◽  
A. C. Ploplis ◽  
D. T. Jacobs

1996 ◽  
Vol 51 (5-6) ◽  
pp. 721-725
Author(s):  
Motohiro Mizuno ◽  
Tetsuo Asaji ◽  
Masahiko Suhara ◽  
Yoshihiro Furukawa

Abstract39K, 87, 85Rb, 133Cs, 205T1, and 1, 2H NMR spin-lattice relaxation times T1 and 14N NQR spin-lattice relaxation times T1Q were determined for R2Pb[Cu(NO2)6] (R = K, Rb, Tl, Cs, and NH4). T1 of 39K and 87Rb showed very short values in the incommensurate phase as compared with those in the other phases. When the commensurate-incommensurate phase transition point is approached from below, 14N T1Q of the R = K, Rb, Tl, and NH4 compounds showed rapid decrease. On the other hand, that of the R = Cs compound began to decrease first after passing beyond the corresponding transition point. The difference of the T1Q behavior may be ascribed to the difference of the condensed phonon mode in the incommensurate phase.


Author(s):  
Md. Hamidul Kabir ◽  
Ravshan Makhkamov ◽  
Shaila Kabir

The solution properties and phase behavior of ammonium hexylene octyl succinate (HOS) was investigated in water and water-oil system. The critical micelle concentration (CMC) of HOS is lower than that of anionic surfactants having same carbon number in the lipophilic part. The phase diagrams of a water/ HOS system and water/ HOS/ C10EO8/ dodecane system were also constructed. Above critical micelle concentration, the surfactant forms a normal micellar solution (Wm) at a low surfactant concentration whereas a lamellar liquid crystalline phase (La) dominates over a wide region through the formation of a two-phase region (La+W) in the binary system. The lamellar phase is arranged in the form of a biocompatible vesicle which is very significant for the drug delivery system. The surfactant tends to be hydrophilic when it is mixed with C10EO8 and a middle-phase microemulsion (D) is appeared in the water-surfactant-dodecane system where both the water and oil soluble drug ingredient can be incorporated in the form of a dispersion. Hence, mixing can tune the hydrophile-lipophile properties of the surfactant. Key words: Ammonium hexylene octyl succinate, mixed surfactant, lamellar liquid crystal, middle-phase microemulsion. Dhaka Univ. J. Pharm. Sci. Vol.3(1-2) 2004 The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


2003 ◽  
Vol 772 ◽  
Author(s):  
M. Schmid ◽  
C. Goze-Bac ◽  
M. Mehring ◽  
S. Roth ◽  
P. Bernier

AbstractLithium intercalted carbon nanotubes have attracted considerable interest as perspective components for energy storage devices. We performed 13C Nuclear Magnetic Resonance spin lattice relaxation measurements in a temperature range from 4 K up to 300 on alkali intercalated Single Walled Carbon Nanotubes in order to investigate the modifications of the electronic properties. The density of states at the Fermi level were determined for pristine, lithium and cesium intercalated carbon nanotubes and are discussed in terms of intercalation and charge transfer effects.


1994 ◽  
Vol 59 (11) ◽  
pp. 2523-2532 ◽  
Author(s):  
John Hondrelis ◽  
John Matsoukas ◽  
George Agelis ◽  
Paul Cordopatis ◽  
Ning Zhou ◽  
...  

The conformation of [Sar1]angiotensin II in water at neutral pH has been examined by proton magnetic resonance spectroscopy at 400 MHz and in particular by comparing its 1H NMR spectral data with those of analogues modified at positions 1,4 and 6, namely [Sar1,Cha8]ANGII, [Des Asp1,Cha8]ANGII, [Aib1,Tyr(Me)4]ANGII, [Aib1,Tyr(Me)4,Ile8]ANGII, [N-MeAib1,Tyr(Me)4]ANGII, [N-MeAib1,Tyr(Me)4,Ile8]ANGII, ANGIII and [Sar1,Ile8]ANGII. Assignment of all proton resonances in these analogues was made possible by 2D COSY NMR experiments. The H-2 and H-4 protons for the histidine ring in [Sar1]ANGII, ANGII and ANGIII were shielded compared with the same protons in [Sar1,Ile8]ANGII, [Sar1,Cha8]ANGII and [Des Asp1,Cha8]ANGII; this shielding effect was not disturbed upon methylation of the tyrosine hydroxyl and/or replacement of residue 1 (sarcosine or aspartic acid) with aminoisobutyric acid (Aib) or N-methyl aminoisobutyric acid (N-MeAib). These data are consistent with our previous suggestion based on NMR studies in neutral DMSO that a characteristic folded conformation for ANGII previously observed in non-polar solvents can also be detected in water at neutral pH, but to a lesser degree.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 727
Author(s):  
Shiyun Jin ◽  
Huifang Xu ◽  
Seungyeol Lee

The enigmatic Bøggild intergrowth in iridescent labradorite crystals was revisited in light of recent work on the incommensurately modulated structures in the intermediated plagioclase. Five igneous samples and one metamorphic labradorite sample with various compositions and lamellar thicknesses were studied in this paper. The lamellar textures were characterized with conventional transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). The compositions of individual lamellae were analyzed with high-resolution energy-dispersive X-ray spectroscopy (EDS) mapping and atom probe tomography (APT). The average structure states of the studied samples were also compared with single-crystal X-ray diffraction data (SC-XRD). The Na-rich lamellae have a composition of An44–48, and the Ca-rich lamellae range from An56 to An63. Significant differences between the lamellar compositions of different samples were observed. The compositions of the Bøggild intergrowth do not only depend on the bulk compositions, but also on the thermal history of the host rock. The implications on the subsolidus phase relationships of the plagioclase feldspar solid solution are discussed. The results cannot be explained by a regular symmetrical solvus such as the Bøggild gap, but they support an inclined two-phase region that closes at low temperature.


Sign in / Sign up

Export Citation Format

Share Document